活海马神经元轴突β-肌动蛋白mRNA的动态变化。

IF 3.6 3区 生物学 Q3 CELL BIOLOGY Traffic Pub Date : 2022-10-01 DOI:10.1111/tra.12865
Byung Hun Lee, Seokyoung Bang, Seung-Ryeol Lee, Noo Li Jeon, Hye Yoon Park
{"title":"活海马神经元轴突β-肌动蛋白mRNA的动态变化。","authors":"Byung Hun Lee,&nbsp;Seokyoung Bang,&nbsp;Seung-Ryeol Lee,&nbsp;Noo Li Jeon,&nbsp;Hye Yoon Park","doi":"10.1111/tra.12865","DOIUrl":null,"url":null,"abstract":"<p><p>Localization of mRNA facilitates spatiotemporally controlled protein expression in neurons. In axons, mRNA transport followed by local protein synthesis plays a critical role in axonal growth and guidance. However, it is not yet clearly understood how mRNA is transported to axonal subcellular sites and what regulates axonal mRNA localization. Using a transgenic mouse model in which endogenous β-actin mRNA is fluorescently labeled, we investigated β-actin mRNA movement in axons of hippocampal neurons. We cultured neurons in microfluidic devices to separate axons from dendrites and performed single-particle tracking of axonal β-actin mRNA. Compared with dendritic β-actin mRNA, axonal β-actin mRNA showed less directed motion and exhibited mostly subdiffusive motion, especially near filopodia and boutons in mature dissociated hippocampal neurons. We found that axonal β-actin mRNA was likely to colocalize with actin patches (APs), regions that have a high density of filamentous actin (F-actin) and are known to have a role in branch initiation. Moreover, simultaneous imaging of F-actin and axonal β-actin mRNA in live neurons revealed that moving β-actin mRNA tended to be docked in the APs. Our findings reveal that axonal β-actin mRNA localization is facilitated by actin networks and suggest that localized β-actin mRNA plays a potential role in axon branch formation.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"23 10","pages":"496-505"},"PeriodicalIF":3.6000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804286/pdf/","citationCount":"1","resultStr":"{\"title\":\"Dynamics of axonal β-actin mRNA in live hippocampal neurons.\",\"authors\":\"Byung Hun Lee,&nbsp;Seokyoung Bang,&nbsp;Seung-Ryeol Lee,&nbsp;Noo Li Jeon,&nbsp;Hye Yoon Park\",\"doi\":\"10.1111/tra.12865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Localization of mRNA facilitates spatiotemporally controlled protein expression in neurons. In axons, mRNA transport followed by local protein synthesis plays a critical role in axonal growth and guidance. However, it is not yet clearly understood how mRNA is transported to axonal subcellular sites and what regulates axonal mRNA localization. Using a transgenic mouse model in which endogenous β-actin mRNA is fluorescently labeled, we investigated β-actin mRNA movement in axons of hippocampal neurons. We cultured neurons in microfluidic devices to separate axons from dendrites and performed single-particle tracking of axonal β-actin mRNA. Compared with dendritic β-actin mRNA, axonal β-actin mRNA showed less directed motion and exhibited mostly subdiffusive motion, especially near filopodia and boutons in mature dissociated hippocampal neurons. We found that axonal β-actin mRNA was likely to colocalize with actin patches (APs), regions that have a high density of filamentous actin (F-actin) and are known to have a role in branch initiation. Moreover, simultaneous imaging of F-actin and axonal β-actin mRNA in live neurons revealed that moving β-actin mRNA tended to be docked in the APs. Our findings reveal that axonal β-actin mRNA localization is facilitated by actin networks and suggest that localized β-actin mRNA plays a potential role in axon branch formation.</p>\",\"PeriodicalId\":23207,\"journal\":{\"name\":\"Traffic\",\"volume\":\"23 10\",\"pages\":\"496-505\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804286/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/tra.12865\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12865","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

mRNA的定位促进了神经元中时空控制的蛋白表达。在轴突中,mRNA转运和局部蛋白合成在轴突生长和引导中起着关键作用。然而,目前还不清楚mRNA是如何转运到轴突亚细胞位置的,以及是什么调节轴突mRNA的定位。利用荧光标记内源性β-肌动蛋白mRNA的转基因小鼠模型,研究了海马神经元轴突中β-肌动蛋白mRNA的运动。我们在微流体装置中培养神经元,分离轴突和树突,并对轴突β-肌动蛋白mRNA进行单颗粒跟踪。与树突β-肌动蛋白mRNA相比,轴突β-肌动蛋白mRNA的定向运动较少,主要表现为亚弥漫性运动,特别是在成熟的游离海马神经元丝状伪足和钮孔附近。我们发现轴突β-肌动蛋白mRNA可能与肌动蛋白斑块(APs)共定位,APs是具有高密度丝状肌动蛋白(F-actin)的区域,已知在分支起始中起作用。此外,活神经元中F-actin和轴突β-actin mRNA的同时成像显示,移动的β-actin mRNA倾向于停靠在APs中。我们的研究结果表明,轴突β-肌动蛋白mRNA的定位是由肌动蛋白网络促进的,并且表明定位的β-肌动蛋白mRNA在轴突分支的形成中起潜在的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of axonal β-actin mRNA in live hippocampal neurons.

Localization of mRNA facilitates spatiotemporally controlled protein expression in neurons. In axons, mRNA transport followed by local protein synthesis plays a critical role in axonal growth and guidance. However, it is not yet clearly understood how mRNA is transported to axonal subcellular sites and what regulates axonal mRNA localization. Using a transgenic mouse model in which endogenous β-actin mRNA is fluorescently labeled, we investigated β-actin mRNA movement in axons of hippocampal neurons. We cultured neurons in microfluidic devices to separate axons from dendrites and performed single-particle tracking of axonal β-actin mRNA. Compared with dendritic β-actin mRNA, axonal β-actin mRNA showed less directed motion and exhibited mostly subdiffusive motion, especially near filopodia and boutons in mature dissociated hippocampal neurons. We found that axonal β-actin mRNA was likely to colocalize with actin patches (APs), regions that have a high density of filamentous actin (F-actin) and are known to have a role in branch initiation. Moreover, simultaneous imaging of F-actin and axonal β-actin mRNA in live neurons revealed that moving β-actin mRNA tended to be docked in the APs. Our findings reveal that axonal β-actin mRNA localization is facilitated by actin networks and suggest that localized β-actin mRNA plays a potential role in axon branch formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Traffic
Traffic 生物-细胞生物学
CiteScore
8.10
自引率
2.20%
发文量
50
审稿时长
2 months
期刊介绍: Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement. All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision. Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.
期刊最新文献
Fluorescent Reporters, Imaging, and Artificial Intelligence Toolkits to Monitor and Quantify Autophagy, Heterophagy, and Lysosomal Trafficking Fluxes. Intercellular Mitochondrial Transfer: The Novel Therapeutic Mechanism for Diseases. Mechanistic Insights Into an Ancient Adenovirus Precursor Protein VII Show Multiple Nuclear Import Receptor Pathways. Dissociation of Drosophila Evi-Wg Complex Occurs Post Apical Internalization in the Maturing Acidic Endosomes. Post-Transcriptional Regulation of Rab7a in Lysosomal Positioning and Drug Resistance in Nutrient-Limited Cancer Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1