Jeffesson de Oliveira-Lima, Rafaela Luiza Dias da Cunha, Andrea Souza de Jesus Santana, Lycia de Brito-Gitirana
{"title":"二苯甲酮-3对斑马鱼(Danio rerio)皮肤和鳃的影响。","authors":"Jeffesson de Oliveira-Lima, Rafaela Luiza Dias da Cunha, Andrea Souza de Jesus Santana, Lycia de Brito-Gitirana","doi":"10.1080/03601234.2023.2247944","DOIUrl":null,"url":null,"abstract":"<p><p>Benzophenone (BP-3) is an organic compound that is a common ingredient in lotions, conditioners, and other personal care products, which helps protect against ultraviolet radiation. This study investigated the effect of BP-3 on the structure of the integument and gills, as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in the gills of <i>Danio rerio</i>. Fish were exposed to different concentrations (7, 70, and 700 µg L<sup>-1</sup>) of BP-3 for 7 and 14 d. For the histological analysis of the integument and gills, the fish were fixed in Bouin liquid and processed according to standard histologic procedures, and the tissue section slices were stained according to different histochemical methods. BP-3 caused tissue damage and morphological alterations in the gills; however, the integument showed no histological or morphological alterations. Furthermore, there was no observed correlation between the BP-3 concentration and exposure period and the gill alterations, as these did not occur in a linear manner. The gills were removed to evaluate the antioxidant defense; for this, CAT and SOD activities were measured, and a reduction of SOD activity was noted, whereas the CAT activity was not significantly affected.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of benzophenone-3 on the integument and gills of zebrafish (<i>Danio rerio</i>).\",\"authors\":\"Jeffesson de Oliveira-Lima, Rafaela Luiza Dias da Cunha, Andrea Souza de Jesus Santana, Lycia de Brito-Gitirana\",\"doi\":\"10.1080/03601234.2023.2247944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Benzophenone (BP-3) is an organic compound that is a common ingredient in lotions, conditioners, and other personal care products, which helps protect against ultraviolet radiation. This study investigated the effect of BP-3 on the structure of the integument and gills, as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in the gills of <i>Danio rerio</i>. Fish were exposed to different concentrations (7, 70, and 700 µg L<sup>-1</sup>) of BP-3 for 7 and 14 d. For the histological analysis of the integument and gills, the fish were fixed in Bouin liquid and processed according to standard histologic procedures, and the tissue section slices were stained according to different histochemical methods. BP-3 caused tissue damage and morphological alterations in the gills; however, the integument showed no histological or morphological alterations. Furthermore, there was no observed correlation between the BP-3 concentration and exposure period and the gill alterations, as these did not occur in a linear manner. The gills were removed to evaluate the antioxidant defense; for this, CAT and SOD activities were measured, and a reduction of SOD activity was noted, whereas the CAT activity was not significantly affected.</p>\",\"PeriodicalId\":15720,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2023.2247944\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2023.2247944","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Impact of benzophenone-3 on the integument and gills of zebrafish (Danio rerio).
Benzophenone (BP-3) is an organic compound that is a common ingredient in lotions, conditioners, and other personal care products, which helps protect against ultraviolet radiation. This study investigated the effect of BP-3 on the structure of the integument and gills, as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in the gills of Danio rerio. Fish were exposed to different concentrations (7, 70, and 700 µg L-1) of BP-3 for 7 and 14 d. For the histological analysis of the integument and gills, the fish were fixed in Bouin liquid and processed according to standard histologic procedures, and the tissue section slices were stained according to different histochemical methods. BP-3 caused tissue damage and morphological alterations in the gills; however, the integument showed no histological or morphological alterations. Furthermore, there was no observed correlation between the BP-3 concentration and exposure period and the gill alterations, as these did not occur in a linear manner. The gills were removed to evaluate the antioxidant defense; for this, CAT and SOD activities were measured, and a reduction of SOD activity was noted, whereas the CAT activity was not significantly affected.