利用磁共振图像,借助集合深度学习架构和类激活图指标自动检测脑肿瘤。

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2024-05-01 DOI:10.1016/j.zemedi.2022.11.010
Omer Turk , Davut Ozhan , Emrullah Acar , Tahir Cetin Akinci , Musa Yilmaz
{"title":"利用磁共振图像,借助集合深度学习架构和类激活图指标自动检测脑肿瘤。","authors":"Omer Turk ,&nbsp;Davut Ozhan ,&nbsp;Emrullah Acar ,&nbsp;Tahir Cetin Akinci ,&nbsp;Musa Yilmaz","doi":"10.1016/j.zemedi.2022.11.010","DOIUrl":null,"url":null,"abstract":"<div><p>Today, as in every life-threatening disease, early diagnosis of brain tumors plays a life-saving role. The brain tumor is formed by the transformation of brain cells from their normal structures into abnormal cell structures. These formed abnormal cells begin to form in masses in the brain regions. Nowadays, many different techniques are employed to detect these tumor masses, and the most common of these techniques is Magnetic Resonance Imaging (MRI). In this study, it is aimed to automatically detect brain tumors with the help of ensemble deep learning architectures (ResNet50, VGG19, InceptionV3 and MobileNet) and Class Activation Maps (CAMs) indicators by employing MRI images. The proposed system was implemented in three stages. In the first stage, it was determined whether there was a tumor in the MR images (Binary Approach). In the second stage, different tumor types (Normal, Glioma Tumor, Meningioma Tumor, Pituitary Tumor) were detected from MR images (Multi-class Approach). In the last stage, CAMs of each tumor group were created as an alternative tool to facilitate the work of specialists in tumor detection. The results showed that the overall accuracy of the binary approach was calculated as 100% on the ResNet50, InceptionV3 and MobileNet architectures, and 99.71% on the VGG19 architecture. Moreover, the accuracy values of 96.45% with ResNet50, 93.40% with VGG19, 85.03% with InceptionV3 and 89.34% with MobileNet architectures were obtained in the multi-class approach.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 2","pages":"Pages 278-290"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388922001313/pdfft?md5=e55da35d209b688226a3577197edb180&pid=1-s2.0-S0939388922001313-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of brain tumors with the aid of ensemble deep learning architectures and class activation map indicators by employing magnetic resonance images\",\"authors\":\"Omer Turk ,&nbsp;Davut Ozhan ,&nbsp;Emrullah Acar ,&nbsp;Tahir Cetin Akinci ,&nbsp;Musa Yilmaz\",\"doi\":\"10.1016/j.zemedi.2022.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Today, as in every life-threatening disease, early diagnosis of brain tumors plays a life-saving role. The brain tumor is formed by the transformation of brain cells from their normal structures into abnormal cell structures. These formed abnormal cells begin to form in masses in the brain regions. Nowadays, many different techniques are employed to detect these tumor masses, and the most common of these techniques is Magnetic Resonance Imaging (MRI). In this study, it is aimed to automatically detect brain tumors with the help of ensemble deep learning architectures (ResNet50, VGG19, InceptionV3 and MobileNet) and Class Activation Maps (CAMs) indicators by employing MRI images. The proposed system was implemented in three stages. In the first stage, it was determined whether there was a tumor in the MR images (Binary Approach). In the second stage, different tumor types (Normal, Glioma Tumor, Meningioma Tumor, Pituitary Tumor) were detected from MR images (Multi-class Approach). In the last stage, CAMs of each tumor group were created as an alternative tool to facilitate the work of specialists in tumor detection. The results showed that the overall accuracy of the binary approach was calculated as 100% on the ResNet50, InceptionV3 and MobileNet architectures, and 99.71% on the VGG19 architecture. Moreover, the accuracy values of 96.45% with ResNet50, 93.40% with VGG19, 85.03% with InceptionV3 and 89.34% with MobileNet architectures were obtained in the multi-class approach.</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\"34 2\",\"pages\":\"Pages 278-290\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939388922001313/pdfft?md5=e55da35d209b688226a3577197edb180&pid=1-s2.0-S0939388922001313-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388922001313\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388922001313","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

如今,与所有危及生命的疾病一样,脑肿瘤的早期诊断起着挽救生命的作用。脑肿瘤是由脑细胞从正常结构转变为异常细胞结构而形成的。这些形成的异常细胞开始在脑区形成肿块。如今,许多不同的技术被用来检测这些肿瘤肿块,其中最常见的技术是磁共振成像(MRI)。本研究旨在利用核磁共振成像图像,在集合深度学习架构(ResNet50、VGG19、InceptionV3 和 MobileNet)和类激活图(CAM)指标的帮助下,自动检测脑肿瘤。所提议的系统分三个阶段实施。第一阶段,确定核磁共振图像中是否存在肿瘤(二元方法)。第二阶段,从磁共振图像中检测出不同的肿瘤类型(正常、胶质瘤、脑膜瘤、垂体瘤)(多类法)。在最后阶段,创建了每个肿瘤组的 CAM,作为替代工具,以方便专家进行肿瘤检测工作。结果显示,二元方法在 ResNet50、InceptionV3 和 MobileNet 架构上的总体准确率为 100%,在 VGG19 架构上的准确率为 99.71%。此外,在多类方法中,ResNet50 的准确率为 96.45%,VGG19 的准确率为 93.40%,InceptionV3 的准确率为 85.03%,MobileNet 架构的准确率为 89.34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic detection of brain tumors with the aid of ensemble deep learning architectures and class activation map indicators by employing magnetic resonance images

Today, as in every life-threatening disease, early diagnosis of brain tumors plays a life-saving role. The brain tumor is formed by the transformation of brain cells from their normal structures into abnormal cell structures. These formed abnormal cells begin to form in masses in the brain regions. Nowadays, many different techniques are employed to detect these tumor masses, and the most common of these techniques is Magnetic Resonance Imaging (MRI). In this study, it is aimed to automatically detect brain tumors with the help of ensemble deep learning architectures (ResNet50, VGG19, InceptionV3 and MobileNet) and Class Activation Maps (CAMs) indicators by employing MRI images. The proposed system was implemented in three stages. In the first stage, it was determined whether there was a tumor in the MR images (Binary Approach). In the second stage, different tumor types (Normal, Glioma Tumor, Meningioma Tumor, Pituitary Tumor) were detected from MR images (Multi-class Approach). In the last stage, CAMs of each tumor group were created as an alternative tool to facilitate the work of specialists in tumor detection. The results showed that the overall accuracy of the binary approach was calculated as 100% on the ResNet50, InceptionV3 and MobileNet architectures, and 99.71% on the VGG19 architecture. Moreover, the accuracy values of 96.45% with ResNet50, 93.40% with VGG19, 85.03% with InceptionV3 and 89.34% with MobileNet architectures were obtained in the multi-class approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Editorial Board Contents Source-detector trajectory optimization for CBCT metal artifact reduction based on PICCS reconstruction Reduction of patient specific quality assurance through plan complexity metrics for VMAT plans with an open-source TPS script Post-mastectomy radiotherapy: Impact of bolus thickness and irradiation technique on skin dose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1