Iwona Lasocka, Elzbieta Jastrzębska, Agnieszka Zuchowska, Ewa Skibniewska, M Skibniewski, Lidia Szulc-Dąbrowska, Iwona Pasternak, Jakub Sitek, Marie Hubalek Kalbacova
{"title":"石墨烯2D平台在静态和动态条件下对HaCaT细胞生长是安全的和细胞兼容的。","authors":"Iwona Lasocka, Elzbieta Jastrzębska, Agnieszka Zuchowska, Ewa Skibniewska, M Skibniewski, Lidia Szulc-Dąbrowska, Iwona Pasternak, Jakub Sitek, Marie Hubalek Kalbacova","doi":"10.1080/17435390.2022.2127128","DOIUrl":null,"url":null,"abstract":"<p><p>The study concerns the influence of graphene monolayer, as a 2 D platform, on cell viability, cytoskeleton, adhesions sites andmorphology of mitochondria of keratinocytes (HaCaT) under static conditions. Based on quantitative and immunofluorescent analysis, it could be stated that graphene substrate does not cause any damage to membrane or disruption of other monitored parameters. Spindle poles and cytokinesis bridges indicating proliferation of cells on this graphene substrate were detected. Moreover, the keratinocyte migration rate on the graphene substrate was comparable to control glass substrate when the created wound was completely closed after 38 hours. HaCaT morphology and viability were also assessed under dynamic conditions (lab on a chip - micro scale). For this purpose, microfluidic graphene system was designed and constructed. No differences as well as no anomalies were observed during cultivation of these cells on the graphene or glass substrates in relation to cultivation conditions: static (macro scale) and dynamic (micro scale). Only natural percentage of dead cells was determined using different methods, which proved that the graphene as the 2 D platform is cytocompatible with keratinocytes. The obtained results encourage the use of the designed lab on a chip system in toxicity testing of graphene also on other cells and further research on the use of graphene monolayers to produce bio-bandages for skin wounds in animal tests.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"16 5","pages":"610-628"},"PeriodicalIF":3.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene 2D platform is safe and cytocompatibile for HaCaT cells growing under static and dynamic conditions.\",\"authors\":\"Iwona Lasocka, Elzbieta Jastrzębska, Agnieszka Zuchowska, Ewa Skibniewska, M Skibniewski, Lidia Szulc-Dąbrowska, Iwona Pasternak, Jakub Sitek, Marie Hubalek Kalbacova\",\"doi\":\"10.1080/17435390.2022.2127128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study concerns the influence of graphene monolayer, as a 2 D platform, on cell viability, cytoskeleton, adhesions sites andmorphology of mitochondria of keratinocytes (HaCaT) under static conditions. Based on quantitative and immunofluorescent analysis, it could be stated that graphene substrate does not cause any damage to membrane or disruption of other monitored parameters. Spindle poles and cytokinesis bridges indicating proliferation of cells on this graphene substrate were detected. Moreover, the keratinocyte migration rate on the graphene substrate was comparable to control glass substrate when the created wound was completely closed after 38 hours. HaCaT morphology and viability were also assessed under dynamic conditions (lab on a chip - micro scale). For this purpose, microfluidic graphene system was designed and constructed. No differences as well as no anomalies were observed during cultivation of these cells on the graphene or glass substrates in relation to cultivation conditions: static (macro scale) and dynamic (micro scale). Only natural percentage of dead cells was determined using different methods, which proved that the graphene as the 2 D platform is cytocompatible with keratinocytes. The obtained results encourage the use of the designed lab on a chip system in toxicity testing of graphene also on other cells and further research on the use of graphene monolayers to produce bio-bandages for skin wounds in animal tests.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\"16 5\",\"pages\":\"610-628\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2022.2127128\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2022.2127128","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Graphene 2D platform is safe and cytocompatibile for HaCaT cells growing under static and dynamic conditions.
The study concerns the influence of graphene monolayer, as a 2 D platform, on cell viability, cytoskeleton, adhesions sites andmorphology of mitochondria of keratinocytes (HaCaT) under static conditions. Based on quantitative and immunofluorescent analysis, it could be stated that graphene substrate does not cause any damage to membrane or disruption of other monitored parameters. Spindle poles and cytokinesis bridges indicating proliferation of cells on this graphene substrate were detected. Moreover, the keratinocyte migration rate on the graphene substrate was comparable to control glass substrate when the created wound was completely closed after 38 hours. HaCaT morphology and viability were also assessed under dynamic conditions (lab on a chip - micro scale). For this purpose, microfluidic graphene system was designed and constructed. No differences as well as no anomalies were observed during cultivation of these cells on the graphene or glass substrates in relation to cultivation conditions: static (macro scale) and dynamic (micro scale). Only natural percentage of dead cells was determined using different methods, which proved that the graphene as the 2 D platform is cytocompatible with keratinocytes. The obtained results encourage the use of the designed lab on a chip system in toxicity testing of graphene also on other cells and further research on the use of graphene monolayers to produce bio-bandages for skin wounds in animal tests.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.