M Soledad Delgado, Cecilio López-Galíndez, Federico Moran
{"title":"基于自组织地图的病毒适应度景观。","authors":"M Soledad Delgado, Cecilio López-Galíndez, Federico Moran","doi":"10.1007/978-3-031-15640-3_2","DOIUrl":null,"url":null,"abstract":"<p><p>The creation of fitness maps from viral populations especially in the case of RNA viruses, with high mutation rates producing quasispecies, is complex since the mutant spectrum is in a very high-dimensional space. In this work, a new approach is presented using a class of neural networks, Self-Organized Maps (SOM), to represent realistic fitness landscapes in two RNA viruses: Human Immunodeficiency Virus type 1 (HIV-1) and Hepatitis C Virus (HCV). This methodology has proven to be very effective in the classification of viral quasispecies, using as criterium the mutant sequences in the population. With HIV-1, the fitness landscapes are constructed by representing the experimentally determined fitness on the sequence map. This approach permitted the depiction of the evolutionary paths of the variants subjected to processes of fitness loss and gain in cell culture. In the case of HCV, the efficiency was measured as a function of the frequency of each haplotype in the population by ultra-deep sequencing. The fitness landscapes obtained provided information on the efficiency of each variant in the quasispecies environment, that is, in relation to the entire spectrum of mutants. With the SOM maps, it is possible to determine the evolutionary dynamics of the different haplotypes.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Viral Fitness Landscapes Based on Self-organizing Maps.\",\"authors\":\"M Soledad Delgado, Cecilio López-Galíndez, Federico Moran\",\"doi\":\"10.1007/978-3-031-15640-3_2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The creation of fitness maps from viral populations especially in the case of RNA viruses, with high mutation rates producing quasispecies, is complex since the mutant spectrum is in a very high-dimensional space. In this work, a new approach is presented using a class of neural networks, Self-Organized Maps (SOM), to represent realistic fitness landscapes in two RNA viruses: Human Immunodeficiency Virus type 1 (HIV-1) and Hepatitis C Virus (HCV). This methodology has proven to be very effective in the classification of viral quasispecies, using as criterium the mutant sequences in the population. With HIV-1, the fitness landscapes are constructed by representing the experimentally determined fitness on the sequence map. This approach permitted the depiction of the evolutionary paths of the variants subjected to processes of fitness loss and gain in cell culture. In the case of HCV, the efficiency was measured as a function of the frequency of each haplotype in the population by ultra-deep sequencing. The fitness landscapes obtained provided information on the efficiency of each variant in the quasispecies environment, that is, in relation to the entire spectrum of mutants. With the SOM maps, it is possible to determine the evolutionary dynamics of the different haplotypes.</p>\",\"PeriodicalId\":11102,\"journal\":{\"name\":\"Current topics in microbiology and immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in microbiology and immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-15640-3_2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in microbiology and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/978-3-031-15640-3_2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Viral Fitness Landscapes Based on Self-organizing Maps.
The creation of fitness maps from viral populations especially in the case of RNA viruses, with high mutation rates producing quasispecies, is complex since the mutant spectrum is in a very high-dimensional space. In this work, a new approach is presented using a class of neural networks, Self-Organized Maps (SOM), to represent realistic fitness landscapes in two RNA viruses: Human Immunodeficiency Virus type 1 (HIV-1) and Hepatitis C Virus (HCV). This methodology has proven to be very effective in the classification of viral quasispecies, using as criterium the mutant sequences in the population. With HIV-1, the fitness landscapes are constructed by representing the experimentally determined fitness on the sequence map. This approach permitted the depiction of the evolutionary paths of the variants subjected to processes of fitness loss and gain in cell culture. In the case of HCV, the efficiency was measured as a function of the frequency of each haplotype in the population by ultra-deep sequencing. The fitness landscapes obtained provided information on the efficiency of each variant in the quasispecies environment, that is, in relation to the entire spectrum of mutants. With the SOM maps, it is possible to determine the evolutionary dynamics of the different haplotypes.
期刊介绍:
The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information.