锌指抗病毒蛋白在hCMEC/D3人脑微血管内皮细胞中的表达:toll样受体3激动剂的作用

IF 2.2 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Neuroimmunomodulation Pub Date : 2022-01-01 DOI:10.1159/000521012
Mako Okudera, Minami Odawara, Masashi Arakawa, Shogo Kawaguchi, Kazuhiko Seya, Tomoh Matsumiya, Riko Sato, Jiangli Ding, Eiji Morita, Tadaatsu Imaizumi
{"title":"锌指抗病毒蛋白在hCMEC/D3人脑微血管内皮细胞中的表达:toll样受体3激动剂的作用","authors":"Mako Okudera,&nbsp;Minami Odawara,&nbsp;Masashi Arakawa,&nbsp;Shogo Kawaguchi,&nbsp;Kazuhiko Seya,&nbsp;Tomoh Matsumiya,&nbsp;Riko Sato,&nbsp;Jiangli Ding,&nbsp;Eiji Morita,&nbsp;Tadaatsu Imaizumi","doi":"10.1159/000521012","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Invasion of viruses into the brain causes viral encephalitis, which can be fatal and causes permanent brain damage. The blood-brain barrier (BBB) protects the brain by excluding harmful substances and microbes. Brain microvascular endothelial cells are important components of the BBB; however, the mechanisms of antiviral reactions in these cells have not been fully elucidated. Zinc-finger antiviral protein (ZAP) is a molecule that restricts the infection of various viruses, and there are 2 major isoforms: ZAPL and ZAPS. Toll-like receptor 3 (TLR3), a pattern-recognition receptor against viral double-stranded RNA, is implicated in antiviral innate immune reactions. The aim of this study was to investigate the expression of ZAP in cultured hCMEC/D3 human brain microvascular endothelial cells treated with an authentic TLR3 agonist polyinosinic-polycytidylic acid (poly IC).</p><p><strong>Methods: </strong>hCMEC/D3 cells were cultured and treated with poly IC. Expression of ZAPL and ZAPS mRNA was investigated using quantitative reverse transcription-polymerase chain reaction, and protein expression of these molecules was examined using western blotting. The role of nuclear factor-κB (NF-κB) was examined using the NF-κB inhibitor, SN50. The roles of interferon (IFN)-β, IFN regulatory factor 3 (IRF3), tripartite motif protein 25 (TRIM25), and retinoic acid-inducible gene-I (RIG-I) in poly IC-induced ZAPS expression were examined using RNA interference. Propagation of Japanese encephalitis virus (JEV) was examined using a focus-forming assay.</p><p><strong>Results: </strong>ZAPS mRNA and protein expression was upregulated by poly IC, whereas the change of ZAPL mRNA and protein levels was minimal. Knockdown of IRF3 or TRIM25 decreased the poly IC-induced upregulation of ZAPS, whereas knockdown of IFN-β or RIG-I did not affect ZAPS upregulation. SN50 did not affect ZAPS expression. Knockdown of ZAP enhanced JEV propagation.</p><p><strong>Conclusion: </strong>ZAPL and ZAPS were expressed in hCMEC/D3 cells, and ZAPS expression was upregulated by poly IC. IRF3 and TRIM25 are involved in poly IC-induced upregulation of ZAPS. ZAP may contribute to antiviral reactions in brain microvascular endothelial cells and protect the brain from invading viruses such as JEV.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":"29 4","pages":"349-358"},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Expression of Zinc-Finger Antiviral Protein in hCMEC/D3 Human Cerebral Microvascular Endothelial Cells: Effect of a Toll-Like Receptor 3 Agonist.\",\"authors\":\"Mako Okudera,&nbsp;Minami Odawara,&nbsp;Masashi Arakawa,&nbsp;Shogo Kawaguchi,&nbsp;Kazuhiko Seya,&nbsp;Tomoh Matsumiya,&nbsp;Riko Sato,&nbsp;Jiangli Ding,&nbsp;Eiji Morita,&nbsp;Tadaatsu Imaizumi\",\"doi\":\"10.1159/000521012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Invasion of viruses into the brain causes viral encephalitis, which can be fatal and causes permanent brain damage. The blood-brain barrier (BBB) protects the brain by excluding harmful substances and microbes. Brain microvascular endothelial cells are important components of the BBB; however, the mechanisms of antiviral reactions in these cells have not been fully elucidated. Zinc-finger antiviral protein (ZAP) is a molecule that restricts the infection of various viruses, and there are 2 major isoforms: ZAPL and ZAPS. Toll-like receptor 3 (TLR3), a pattern-recognition receptor against viral double-stranded RNA, is implicated in antiviral innate immune reactions. The aim of this study was to investigate the expression of ZAP in cultured hCMEC/D3 human brain microvascular endothelial cells treated with an authentic TLR3 agonist polyinosinic-polycytidylic acid (poly IC).</p><p><strong>Methods: </strong>hCMEC/D3 cells were cultured and treated with poly IC. Expression of ZAPL and ZAPS mRNA was investigated using quantitative reverse transcription-polymerase chain reaction, and protein expression of these molecules was examined using western blotting. The role of nuclear factor-κB (NF-κB) was examined using the NF-κB inhibitor, SN50. The roles of interferon (IFN)-β, IFN regulatory factor 3 (IRF3), tripartite motif protein 25 (TRIM25), and retinoic acid-inducible gene-I (RIG-I) in poly IC-induced ZAPS expression were examined using RNA interference. Propagation of Japanese encephalitis virus (JEV) was examined using a focus-forming assay.</p><p><strong>Results: </strong>ZAPS mRNA and protein expression was upregulated by poly IC, whereas the change of ZAPL mRNA and protein levels was minimal. Knockdown of IRF3 or TRIM25 decreased the poly IC-induced upregulation of ZAPS, whereas knockdown of IFN-β or RIG-I did not affect ZAPS upregulation. SN50 did not affect ZAPS expression. Knockdown of ZAP enhanced JEV propagation.</p><p><strong>Conclusion: </strong>ZAPL and ZAPS were expressed in hCMEC/D3 cells, and ZAPS expression was upregulated by poly IC. IRF3 and TRIM25 are involved in poly IC-induced upregulation of ZAPS. ZAP may contribute to antiviral reactions in brain microvascular endothelial cells and protect the brain from invading viruses such as JEV.</p>\",\"PeriodicalId\":19133,\"journal\":{\"name\":\"Neuroimmunomodulation\",\"volume\":\"29 4\",\"pages\":\"349-358\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimmunomodulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000521012\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimmunomodulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000521012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 1

摘要

简介:病毒侵入大脑导致病毒性脑炎,这可能是致命的,并导致永久性脑损伤。血脑屏障(BBB)通过排除有害物质和微生物来保护大脑。脑微血管内皮细胞是血脑屏障的重要组成部分;然而,这些细胞中抗病毒反应的机制尚未完全阐明。锌指抗病毒蛋白(ZAP)是一种限制多种病毒感染的分子,主要有两种亚型:ZAPL和ZAPS。toll样受体3 (TLR3)是一种针对病毒双链RNA的模式识别受体,与抗病毒先天免疫反应有关。本研究的目的是研究ZAP在TLR3激动剂聚肌苷-多胞酸(poly IC)处理下培养的hCMEC/D3人脑微血管内皮细胞中的表达。方法:培养hCMEC/D3细胞,经poly - IC处理,采用定量逆转录-聚合酶链反应检测ZAPL和ZAPS mRNA的表达,western blotting检测这两个分子的蛋白表达。采用NF-κB抑制剂SN50检测核因子-κB (NF-κB)的作用。采用RNA干扰法检测干扰素(IFN)-β、IFN调节因子3 (IRF3)、三方基序蛋白25 (TRIM25)和维甲酸诱导基因i (RIG-I)在聚ic诱导的ZAPS表达中的作用。采用病灶形成法检测日本脑炎病毒(JEV)的传播。结果:聚IC可上调ZAPS mRNA和蛋白的表达,而对ZAPL mRNA和蛋白的表达变化不大。敲低IRF3或TRIM25可降低poly - ic诱导的ZAPS上调,而敲低IFN-β或RIG-I则不影响ZAPS上调。SN50不影响ZAPS的表达。ZAP的敲除增强了乙脑病毒的传播。结论:在hCMEC/D3细胞中有ZAPL和ZAPS的表达,聚IC可上调ZAPS的表达,IRF3和TRIM25参与了聚IC诱导的ZAPS的上调。ZAP可能有助于脑微血管内皮细胞的抗病毒反应,并保护大脑免受乙脑病毒等入侵病毒的侵害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expression of Zinc-Finger Antiviral Protein in hCMEC/D3 Human Cerebral Microvascular Endothelial Cells: Effect of a Toll-Like Receptor 3 Agonist.

Introduction: Invasion of viruses into the brain causes viral encephalitis, which can be fatal and causes permanent brain damage. The blood-brain barrier (BBB) protects the brain by excluding harmful substances and microbes. Brain microvascular endothelial cells are important components of the BBB; however, the mechanisms of antiviral reactions in these cells have not been fully elucidated. Zinc-finger antiviral protein (ZAP) is a molecule that restricts the infection of various viruses, and there are 2 major isoforms: ZAPL and ZAPS. Toll-like receptor 3 (TLR3), a pattern-recognition receptor against viral double-stranded RNA, is implicated in antiviral innate immune reactions. The aim of this study was to investigate the expression of ZAP in cultured hCMEC/D3 human brain microvascular endothelial cells treated with an authentic TLR3 agonist polyinosinic-polycytidylic acid (poly IC).

Methods: hCMEC/D3 cells were cultured and treated with poly IC. Expression of ZAPL and ZAPS mRNA was investigated using quantitative reverse transcription-polymerase chain reaction, and protein expression of these molecules was examined using western blotting. The role of nuclear factor-κB (NF-κB) was examined using the NF-κB inhibitor, SN50. The roles of interferon (IFN)-β, IFN regulatory factor 3 (IRF3), tripartite motif protein 25 (TRIM25), and retinoic acid-inducible gene-I (RIG-I) in poly IC-induced ZAPS expression were examined using RNA interference. Propagation of Japanese encephalitis virus (JEV) was examined using a focus-forming assay.

Results: ZAPS mRNA and protein expression was upregulated by poly IC, whereas the change of ZAPL mRNA and protein levels was minimal. Knockdown of IRF3 or TRIM25 decreased the poly IC-induced upregulation of ZAPS, whereas knockdown of IFN-β or RIG-I did not affect ZAPS upregulation. SN50 did not affect ZAPS expression. Knockdown of ZAP enhanced JEV propagation.

Conclusion: ZAPL and ZAPS were expressed in hCMEC/D3 cells, and ZAPS expression was upregulated by poly IC. IRF3 and TRIM25 are involved in poly IC-induced upregulation of ZAPS. ZAP may contribute to antiviral reactions in brain microvascular endothelial cells and protect the brain from invading viruses such as JEV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroimmunomodulation
Neuroimmunomodulation 医学-免疫学
CiteScore
3.60
自引率
4.20%
发文量
35
审稿时长
>12 weeks
期刊介绍: The rapidly expanding area of research known as neuroimmunomodulation explores the way in which the nervous system interacts with the immune system via neural, hormonal, and paracrine actions. Encompassing both basic and clinical research, ''Neuroimmunomodulation'' reports on all aspects of these interactions. Basic investigations consider all neural and humoral networks from molecular genetics through cell regulation to integrative systems of the body. The journal also aims to clarify the basic mechanisms involved in the pathogenesis of the CNS pathology in AIDS patients and in various neurodegenerative diseases. Although primarily devoted to research articles, timely reviews are published on a regular basis.
期刊最新文献
KETO-MOOD: Ketogenic Diet for Microbiome Optimization and Overcoming Depression: A Protocol for a Randomized Controlled Trial. Erratum. A brief historic review of research on early life stress and inflammation across the lifespan. Immunological Approaches in the Diagnosis and Treatment of Psychiatric Disorders - a Historical Overview. The saNeuroGut Initiative: Investigating the gut microbiome and symptoms of anxiety, depression and posttraumatic stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1