Rudolf Debelak, Samuel Pawel, Carolin Strobl, Edgar C. Merkle
{"title":"项目反应理论中贝叶斯最大后验估计的基于分数的测量不变性检验","authors":"Rudolf Debelak, Samuel Pawel, Carolin Strobl, Edgar C. Merkle","doi":"10.1111/bmsp.12275","DOIUrl":null,"url":null,"abstract":"<p>A family of score-based tests has been proposed in recent years for assessing the invariance of model parameters in several models of item response theory (IRT). These tests were originally developed in a maximum likelihood framework. This study discusses analogous tests for Bayesian maximum-a-posteriori estimates and multiple-group IRT models. We propose two families of statistical tests, which are based on an approximation using a pooled variance method, or on a simulation approach based on asymptotic results. The resulting tests were evaluated by a simulation study, which investigated their sensitivity against differential item functioning with respect to a categorical or continuous person covariate in the two- and three-parametric logistic models. Whereas the method based on pooled variance was found to be useful in practice with maximum likelihood as well as maximum-a-posteriori estimates, the simulation-based approach was found to require large sample sizes to lead to satisfactory results.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"75 3","pages":"728-752"},"PeriodicalIF":1.5000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796736/pdf/","citationCount":"0","resultStr":"{\"title\":\"Score-based measurement invariance checks for Bayesian maximum-a-posteriori estimates in item response theory\",\"authors\":\"Rudolf Debelak, Samuel Pawel, Carolin Strobl, Edgar C. Merkle\",\"doi\":\"10.1111/bmsp.12275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A family of score-based tests has been proposed in recent years for assessing the invariance of model parameters in several models of item response theory (IRT). These tests were originally developed in a maximum likelihood framework. This study discusses analogous tests for Bayesian maximum-a-posteriori estimates and multiple-group IRT models. We propose two families of statistical tests, which are based on an approximation using a pooled variance method, or on a simulation approach based on asymptotic results. The resulting tests were evaluated by a simulation study, which investigated their sensitivity against differential item functioning with respect to a categorical or continuous person covariate in the two- and three-parametric logistic models. Whereas the method based on pooled variance was found to be useful in practice with maximum likelihood as well as maximum-a-posteriori estimates, the simulation-based approach was found to require large sample sizes to lead to satisfactory results.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\"75 3\",\"pages\":\"728-752\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796736/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12275\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12275","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Score-based measurement invariance checks for Bayesian maximum-a-posteriori estimates in item response theory
A family of score-based tests has been proposed in recent years for assessing the invariance of model parameters in several models of item response theory (IRT). These tests were originally developed in a maximum likelihood framework. This study discusses analogous tests for Bayesian maximum-a-posteriori estimates and multiple-group IRT models. We propose two families of statistical tests, which are based on an approximation using a pooled variance method, or on a simulation approach based on asymptotic results. The resulting tests were evaluated by a simulation study, which investigated their sensitivity against differential item functioning with respect to a categorical or continuous person covariate in the two- and three-parametric logistic models. Whereas the method based on pooled variance was found to be useful in practice with maximum likelihood as well as maximum-a-posteriori estimates, the simulation-based approach was found to require large sample sizes to lead to satisfactory results.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.