Qian Yu, Guangyao Li, Jiangjing Li, Li Sun, Yonghui Yang, Lei Tao
{"title":"鸢尾素通过抑制细胞凋亡和促炎细胞因子的表达来保护大脑神经元免受缺氧/再氧化。","authors":"Qian Yu, Guangyao Li, Jiangjing Li, Li Sun, Yonghui Yang, Lei Tao","doi":"10.1159/000524273","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ischemic stroke is a major health issue that causes high incidents of morbidity and mortality worldwide. Irisin is an excise-induced protein that has exhibited pleiotropic properties. Accumulating evidence reveals its critical roles in the regulation of various cellular functions, including nervous system functions. This study aims to disclose the effect of irisin on rat cerebral neurons suffering from hypoxia/reoxygenation (H/R) treatment and to explore the potential underlying molecular mechanisms.</p><p><strong>Methods: </strong>The percentage of rat cerebral neuron cell death was determined by flow cytometry analysis and MTT assay. The expression levels of target genes were measured by western blotting and real-time quantitative reverse transcription PCR assay.</p><p><strong>Results: </strong>Our results demonstrated that irisin treatment substantially reduced H/R-induced apoptosis of rat cerebral neurons. Further investigation revealed that irisin treatment markedly decreased mitogen-activated protein kinase (MAPK) signaling pathway activation and suppressed pro-informatory cytokine expression in cerebral neurons with H/R challenge. Finally, we showed that the neuroprotective effect and anti-inflammatory effect of irisin were comparable with three MAPK signaling inhibitors.</p><p><strong>Conclusion: </strong>Irisin exerts profound neuroprotective and anti-inflammatory effects on H/R-stimulated cerebral neurons by inhibiting the MAPK signaling activation. Therefore, irisin may serve as a potential drug for the treatment of patients with ischemic stroke.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":"29 4","pages":"425-432"},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Irisin Protects Cerebral Neurons from Hypoxia/Reoxygenation via Suppression of Apoptosis and Expression of Pro-Inflammatory Cytokines.\",\"authors\":\"Qian Yu, Guangyao Li, Jiangjing Li, Li Sun, Yonghui Yang, Lei Tao\",\"doi\":\"10.1159/000524273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ischemic stroke is a major health issue that causes high incidents of morbidity and mortality worldwide. Irisin is an excise-induced protein that has exhibited pleiotropic properties. Accumulating evidence reveals its critical roles in the regulation of various cellular functions, including nervous system functions. This study aims to disclose the effect of irisin on rat cerebral neurons suffering from hypoxia/reoxygenation (H/R) treatment and to explore the potential underlying molecular mechanisms.</p><p><strong>Methods: </strong>The percentage of rat cerebral neuron cell death was determined by flow cytometry analysis and MTT assay. The expression levels of target genes were measured by western blotting and real-time quantitative reverse transcription PCR assay.</p><p><strong>Results: </strong>Our results demonstrated that irisin treatment substantially reduced H/R-induced apoptosis of rat cerebral neurons. Further investigation revealed that irisin treatment markedly decreased mitogen-activated protein kinase (MAPK) signaling pathway activation and suppressed pro-informatory cytokine expression in cerebral neurons with H/R challenge. Finally, we showed that the neuroprotective effect and anti-inflammatory effect of irisin were comparable with three MAPK signaling inhibitors.</p><p><strong>Conclusion: </strong>Irisin exerts profound neuroprotective and anti-inflammatory effects on H/R-stimulated cerebral neurons by inhibiting the MAPK signaling activation. Therefore, irisin may serve as a potential drug for the treatment of patients with ischemic stroke.</p>\",\"PeriodicalId\":19133,\"journal\":{\"name\":\"Neuroimmunomodulation\",\"volume\":\"29 4\",\"pages\":\"425-432\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimmunomodulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000524273\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimmunomodulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000524273","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Irisin Protects Cerebral Neurons from Hypoxia/Reoxygenation via Suppression of Apoptosis and Expression of Pro-Inflammatory Cytokines.
Background: Ischemic stroke is a major health issue that causes high incidents of morbidity and mortality worldwide. Irisin is an excise-induced protein that has exhibited pleiotropic properties. Accumulating evidence reveals its critical roles in the regulation of various cellular functions, including nervous system functions. This study aims to disclose the effect of irisin on rat cerebral neurons suffering from hypoxia/reoxygenation (H/R) treatment and to explore the potential underlying molecular mechanisms.
Methods: The percentage of rat cerebral neuron cell death was determined by flow cytometry analysis and MTT assay. The expression levels of target genes were measured by western blotting and real-time quantitative reverse transcription PCR assay.
Results: Our results demonstrated that irisin treatment substantially reduced H/R-induced apoptosis of rat cerebral neurons. Further investigation revealed that irisin treatment markedly decreased mitogen-activated protein kinase (MAPK) signaling pathway activation and suppressed pro-informatory cytokine expression in cerebral neurons with H/R challenge. Finally, we showed that the neuroprotective effect and anti-inflammatory effect of irisin were comparable with three MAPK signaling inhibitors.
Conclusion: Irisin exerts profound neuroprotective and anti-inflammatory effects on H/R-stimulated cerebral neurons by inhibiting the MAPK signaling activation. Therefore, irisin may serve as a potential drug for the treatment of patients with ischemic stroke.
期刊介绍:
The rapidly expanding area of research known as neuroimmunomodulation explores the way in which the nervous system interacts with the immune system via neural, hormonal, and paracrine actions. Encompassing both basic and clinical research, ''Neuroimmunomodulation'' reports on all aspects of these interactions. Basic investigations consider all neural and humoral networks from molecular genetics through cell regulation to integrative systems of the body. The journal also aims to clarify the basic mechanisms involved in the pathogenesis of the CNS pathology in AIDS patients and in various neurodegenerative diseases. Although primarily devoted to research articles, timely reviews are published on a regular basis.