{"title":"基于哈希的深度概率推荐语义关联属性知识图嵌入增强。","authors":"Nasrullah Khan, Zongmin Ma, Li Yan, Aman Ullah","doi":"10.1007/s10489-022-03235-7","DOIUrl":null,"url":null,"abstract":"<p><p>Knowledge graph embedding (KGE) is effectively exploited in providing precise and accurate recommendations from many perspectives in different application scenarios. However, such methods that utilize entire embedded Knowledge Graph (KG) without applying <i>information-relevance regulatory</i> constraints fail to stop the noise penetration into the underlying information. Moreover, higher computational time complexity is a CPU overhead in KG-enhanced systems and applications. The occurrence of these limitations significantly degrade the recommendation performance. Therefore, to cope with these challenges we proposed novel KGEE (Knowledge Graph Embedding Enhancement) approach of <i>Hashing-based Semantic-relevance Attributed Graph-embedding Enhancement</i> (H-SAGE) to model semantically-relevant higher-order entities and relations into the unique Meta-paths. For this purpose, we introduced <i>Node Relevance-based Guided-walk</i> (NRG) modeling technique. Further, to deal with the computational time-complexity, we converted the relevant information to the Hash-codes and proposed <i>Deep-Probabilistic</i> (dProb) technique to place hash-codes in the relevant hash-buckets. Again, we used <i>dProb</i> to generate guided function-calls to maximize the possibility of Hash-Hits in the hash-buckets. In case of Hash-Miss, we applied <i>Locality Sensitive</i> (LS) hashing to retrieve the required information. We performed experiments on three benchmark datasets and compared the empirical as well as the computational performance of H-SAGE with the baseline approaches. The achieved results and comparisons demonstrate that the proposed approach has outperformed the-state-of-the-art methods in the mentioned facets of evaluation.</p>","PeriodicalId":72260,"journal":{"name":"Applied intelligence (Dordrecht, Netherlands)","volume":"53 2","pages":"2295-2320"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075930/pdf/","citationCount":"7","resultStr":"{\"title\":\"Hashing-based semantic relevance attributed knowledge graph embedding enhancement for deep probabilistic recommendation.\",\"authors\":\"Nasrullah Khan, Zongmin Ma, Li Yan, Aman Ullah\",\"doi\":\"10.1007/s10489-022-03235-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knowledge graph embedding (KGE) is effectively exploited in providing precise and accurate recommendations from many perspectives in different application scenarios. However, such methods that utilize entire embedded Knowledge Graph (KG) without applying <i>information-relevance regulatory</i> constraints fail to stop the noise penetration into the underlying information. Moreover, higher computational time complexity is a CPU overhead in KG-enhanced systems and applications. The occurrence of these limitations significantly degrade the recommendation performance. Therefore, to cope with these challenges we proposed novel KGEE (Knowledge Graph Embedding Enhancement) approach of <i>Hashing-based Semantic-relevance Attributed Graph-embedding Enhancement</i> (H-SAGE) to model semantically-relevant higher-order entities and relations into the unique Meta-paths. For this purpose, we introduced <i>Node Relevance-based Guided-walk</i> (NRG) modeling technique. Further, to deal with the computational time-complexity, we converted the relevant information to the Hash-codes and proposed <i>Deep-Probabilistic</i> (dProb) technique to place hash-codes in the relevant hash-buckets. Again, we used <i>dProb</i> to generate guided function-calls to maximize the possibility of Hash-Hits in the hash-buckets. In case of Hash-Miss, we applied <i>Locality Sensitive</i> (LS) hashing to retrieve the required information. We performed experiments on three benchmark datasets and compared the empirical as well as the computational performance of H-SAGE with the baseline approaches. The achieved results and comparisons demonstrate that the proposed approach has outperformed the-state-of-the-art methods in the mentioned facets of evaluation.</p>\",\"PeriodicalId\":72260,\"journal\":{\"name\":\"Applied intelligence (Dordrecht, Netherlands)\",\"volume\":\"53 2\",\"pages\":\"2295-2320\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075930/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied intelligence (Dordrecht, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10489-022-03235-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied intelligence (Dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10489-022-03235-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hashing-based semantic relevance attributed knowledge graph embedding enhancement for deep probabilistic recommendation.
Knowledge graph embedding (KGE) is effectively exploited in providing precise and accurate recommendations from many perspectives in different application scenarios. However, such methods that utilize entire embedded Knowledge Graph (KG) without applying information-relevance regulatory constraints fail to stop the noise penetration into the underlying information. Moreover, higher computational time complexity is a CPU overhead in KG-enhanced systems and applications. The occurrence of these limitations significantly degrade the recommendation performance. Therefore, to cope with these challenges we proposed novel KGEE (Knowledge Graph Embedding Enhancement) approach of Hashing-based Semantic-relevance Attributed Graph-embedding Enhancement (H-SAGE) to model semantically-relevant higher-order entities and relations into the unique Meta-paths. For this purpose, we introduced Node Relevance-based Guided-walk (NRG) modeling technique. Further, to deal with the computational time-complexity, we converted the relevant information to the Hash-codes and proposed Deep-Probabilistic (dProb) technique to place hash-codes in the relevant hash-buckets. Again, we used dProb to generate guided function-calls to maximize the possibility of Hash-Hits in the hash-buckets. In case of Hash-Miss, we applied Locality Sensitive (LS) hashing to retrieve the required information. We performed experiments on three benchmark datasets and compared the empirical as well as the computational performance of H-SAGE with the baseline approaches. The achieved results and comparisons demonstrate that the proposed approach has outperformed the-state-of-the-art methods in the mentioned facets of evaluation.