视交叉上核动力学的体内记录揭示了精氨酸加压素神经元在昼夜节律起搏中的主导作用。

IF 7.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY PLoS Biology Pub Date : 2023-08-29 eCollection Date: 2023-08-01 DOI:10.1371/journal.pbio.3002281
Yusuke Tsuno, Yubo Peng, Shin-Ichi Horike, Mohan Wang, Ayako Matsui, Kanato Yamagata, Mizuki Sugiyama, Takahiro J Nakamura, Takiko Daikoku, Takashi Maejima, Michihiro Mieda
{"title":"视交叉上核动力学的体内记录揭示了精氨酸加压素神经元在昼夜节律起搏中的主导作用。","authors":"Yusuke Tsuno,&nbsp;Yubo Peng,&nbsp;Shin-Ichi Horike,&nbsp;Mohan Wang,&nbsp;Ayako Matsui,&nbsp;Kanato Yamagata,&nbsp;Mizuki Sugiyama,&nbsp;Takahiro J Nakamura,&nbsp;Takiko Daikoku,&nbsp;Takashi Maejima,&nbsp;Michihiro Mieda","doi":"10.1371/journal.pbio.3002281","DOIUrl":null,"url":null,"abstract":"<p><p>The central circadian clock of the suprachiasmatic nucleus (SCN) is a network consisting of various types of neurons and glial cells. Individual cells have the autonomous molecular machinery of a cellular clock, but their intrinsic periods vary considerably. Here, we show that arginine vasopressin (AVP) neurons set the ensemble period of the SCN network in vivo to control the circadian behavior rhythm. Artificial lengthening of cellular periods by deleting casein kinase 1 delta (CK1δ) in the whole SCN lengthened the free-running period of behavior rhythm to an extent similar to CK1δ deletion specific to AVP neurons. However, in SCN slices, PER2::LUC reporter rhythms of these mice only partially and transiently recapitulated the period lengthening, showing a dissociation between the SCN shell and core with a period instability in the shell. In contrast, in vivo calcium rhythms of both AVP and vasoactive intestinal peptide (VIP) neurons in the SCN of freely moving mice demonstrated stably lengthened periods similar to the behavioral rhythm upon AVP neuron-specific CK1δ deletion, without changing the phase relationships between each other. Furthermore, optogenetic activation of AVP neurons acutely induced calcium increase in VIP neurons in vivo. These results indicate that AVP neurons regulate other SCN neurons, such as VIP neurons, in vivo and thus act as a primary determinant of the SCN ensemble period.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465001/pdf/","citationCount":"1","resultStr":"{\"title\":\"In vivo recording of suprachiasmatic nucleus dynamics reveals a dominant role of arginine vasopressin neurons in circadian pacesetting.\",\"authors\":\"Yusuke Tsuno,&nbsp;Yubo Peng,&nbsp;Shin-Ichi Horike,&nbsp;Mohan Wang,&nbsp;Ayako Matsui,&nbsp;Kanato Yamagata,&nbsp;Mizuki Sugiyama,&nbsp;Takahiro J Nakamura,&nbsp;Takiko Daikoku,&nbsp;Takashi Maejima,&nbsp;Michihiro Mieda\",\"doi\":\"10.1371/journal.pbio.3002281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The central circadian clock of the suprachiasmatic nucleus (SCN) is a network consisting of various types of neurons and glial cells. Individual cells have the autonomous molecular machinery of a cellular clock, but their intrinsic periods vary considerably. Here, we show that arginine vasopressin (AVP) neurons set the ensemble period of the SCN network in vivo to control the circadian behavior rhythm. Artificial lengthening of cellular periods by deleting casein kinase 1 delta (CK1δ) in the whole SCN lengthened the free-running period of behavior rhythm to an extent similar to CK1δ deletion specific to AVP neurons. However, in SCN slices, PER2::LUC reporter rhythms of these mice only partially and transiently recapitulated the period lengthening, showing a dissociation between the SCN shell and core with a period instability in the shell. In contrast, in vivo calcium rhythms of both AVP and vasoactive intestinal peptide (VIP) neurons in the SCN of freely moving mice demonstrated stably lengthened periods similar to the behavioral rhythm upon AVP neuron-specific CK1δ deletion, without changing the phase relationships between each other. Furthermore, optogenetic activation of AVP neurons acutely induced calcium increase in VIP neurons in vivo. These results indicate that AVP neurons regulate other SCN neurons, such as VIP neurons, in vivo and thus act as a primary determinant of the SCN ensemble period.</p>\",\"PeriodicalId\":20240,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465001/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002281\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002281","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

视交叉上核(SCN)的中枢昼夜节律时钟是一个由各种类型的神经元和神经胶质细胞组成的网络。单个细胞具有细胞时钟的自主分子机制,但其固有周期差异很大。在这里,我们发现精氨酸加压素(AVP)神经元在体内设置SCN网络的集合期,以控制昼夜节律。通过删除整个SCN中的酪蛋白激酶1δ(CK1δ)来人工延长细胞周期,将行为节律的自由运行期延长到类似于AVP神经元特有的CK1δ缺失的程度。然而,在SCN切片中,这些小鼠的PER2::LUC报告基因节律仅部分和短暂地再现了周期延长,显示SCN外壳和核心之间的解离,外壳中的周期不稳定。相反,在自由运动小鼠的SCN中,AVP和血管活性肠肽(VIP)神经元的体内钙节律表现出稳定延长的周期,类似于AVP神经元特异性CK1δ缺失时的行为节律,而不改变彼此之间的相位关系。此外,AVP神经元的光遗传学激活在体内急性诱导VIP神经元的钙增加。这些结果表明,AVP神经元在体内调节其他SCN神经元,如VIP神经元,从而作为SCN集合期的主要决定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vivo recording of suprachiasmatic nucleus dynamics reveals a dominant role of arginine vasopressin neurons in circadian pacesetting.

The central circadian clock of the suprachiasmatic nucleus (SCN) is a network consisting of various types of neurons and glial cells. Individual cells have the autonomous molecular machinery of a cellular clock, but their intrinsic periods vary considerably. Here, we show that arginine vasopressin (AVP) neurons set the ensemble period of the SCN network in vivo to control the circadian behavior rhythm. Artificial lengthening of cellular periods by deleting casein kinase 1 delta (CK1δ) in the whole SCN lengthened the free-running period of behavior rhythm to an extent similar to CK1δ deletion specific to AVP neurons. However, in SCN slices, PER2::LUC reporter rhythms of these mice only partially and transiently recapitulated the period lengthening, showing a dissociation between the SCN shell and core with a period instability in the shell. In contrast, in vivo calcium rhythms of both AVP and vasoactive intestinal peptide (VIP) neurons in the SCN of freely moving mice demonstrated stably lengthened periods similar to the behavioral rhythm upon AVP neuron-specific CK1δ deletion, without changing the phase relationships between each other. Furthermore, optogenetic activation of AVP neurons acutely induced calcium increase in VIP neurons in vivo. These results indicate that AVP neurons regulate other SCN neurons, such as VIP neurons, in vivo and thus act as a primary determinant of the SCN ensemble period.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Biology
PLoS Biology 生物-生化与分子生物学
CiteScore
14.40
自引率
2.00%
发文量
359
审稿时长
3 months
期刊介绍: PLOS Biology is an open-access, peer-reviewed general biology journal published by PLOS, a nonprofit organization of scientists and physicians dedicated to making the world's scientific and medical literature freely accessible. The journal publishes new articles online weekly, with issues compiled and published monthly. ISSN Numbers: eISSN: 1545-7885 ISSN: 1544-9173
期刊最新文献
Functional network modules overlap and are linked to interindividual connectome differences during human brain development Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion Organelle landscape analysis using a multiparametric particle-based method Integration of estimated regional gene expression with neuroimaging and clinical phenotypes at biobank scale Alveolin proteins in the Toxoplasma inner membrane complex form a highly interconnected structure that maintains parasite shape and replication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1