Caitlyn J Bartsch, Sophia Aaflaq, Jessica T Jacobs, Molly Smith, Fletcher Summa, Savannah Skinner, Elana Qasem, Rylee Thompson, Zheng Li, Jacob C Nordman
{"title":"单剂量氯胺酮可增强小鼠早期生活压力诱导的攻击性,对小鼠的恐惧记忆、焦虑样行为或抑郁样行为没有影响。","authors":"Caitlyn J Bartsch, Sophia Aaflaq, Jessica T Jacobs, Molly Smith, Fletcher Summa, Savannah Skinner, Elana Qasem, Rylee Thompson, Zheng Li, Jacob C Nordman","doi":"10.1037/bne0000560","DOIUrl":null,"url":null,"abstract":"<p><p>Ketamine is a dissociative anesthetic that has been shown to have antidepressant effects in humans and has been proposed as a potential treatment for mood disorders such as posttraumatic stress disorder and aggression. However, previous studies from our lab and others have demonstrated that ketamine's effects are highly context- and dose-dependent. In a recent study, we found that 10 mg/kg ketamine could exacerbate the effects of early life stress on excessive aggression in mice. To further investigate, the effect of ketamine on moods, such as fear, anxiety, depression, and aggression, we used a mouse model of early life stress, involving chronic social isolation followed by acute traumatic stress in the form of noncontingent, unpredictable foot shock during adolescence. We find this is necessary to induce long-lasting excessive aggression in a novel environment. Seven- to eight-week-old socially isolated mice were given IP injections of 10 mg/kg ketamine 30 min before being subjected to foot shock and then assessed 7 days later for changes in sociability, aggression, mobility, anxiety-like behavior, and depression-like behavior. The results show that ketamine selectively increases long-lasting aggression in mice exposed to foot shock, but does not affect mood-related behaviors or locomotion. These findings suggest that during early life stress, ketamine may exert its effects by specifically targeting aggression brain circuitry that is distinct from brain circuits responsible for nonaggressive social or emotional behaviors. Therefore, while ketamine may be a promising treatment for various mood disorders, caution should be exercised when using ketamine to treat disorders associated with early life stress. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"137 5","pages":"281-288"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694802/pdf/","citationCount":"0","resultStr":"{\"title\":\"A single dose of ketamine enhances early life stress-induced aggression with no effect on fear memory, anxiety-like behavior, or depression-like behavior in mice.\",\"authors\":\"Caitlyn J Bartsch, Sophia Aaflaq, Jessica T Jacobs, Molly Smith, Fletcher Summa, Savannah Skinner, Elana Qasem, Rylee Thompson, Zheng Li, Jacob C Nordman\",\"doi\":\"10.1037/bne0000560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ketamine is a dissociative anesthetic that has been shown to have antidepressant effects in humans and has been proposed as a potential treatment for mood disorders such as posttraumatic stress disorder and aggression. However, previous studies from our lab and others have demonstrated that ketamine's effects are highly context- and dose-dependent. In a recent study, we found that 10 mg/kg ketamine could exacerbate the effects of early life stress on excessive aggression in mice. To further investigate, the effect of ketamine on moods, such as fear, anxiety, depression, and aggression, we used a mouse model of early life stress, involving chronic social isolation followed by acute traumatic stress in the form of noncontingent, unpredictable foot shock during adolescence. We find this is necessary to induce long-lasting excessive aggression in a novel environment. Seven- to eight-week-old socially isolated mice were given IP injections of 10 mg/kg ketamine 30 min before being subjected to foot shock and then assessed 7 days later for changes in sociability, aggression, mobility, anxiety-like behavior, and depression-like behavior. The results show that ketamine selectively increases long-lasting aggression in mice exposed to foot shock, but does not affect mood-related behaviors or locomotion. These findings suggest that during early life stress, ketamine may exert its effects by specifically targeting aggression brain circuitry that is distinct from brain circuits responsible for nonaggressive social or emotional behaviors. Therefore, while ketamine may be a promising treatment for various mood disorders, caution should be exercised when using ketamine to treat disorders associated with early life stress. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":8739,\"journal\":{\"name\":\"Behavioral neuroscience\",\"volume\":\"137 5\",\"pages\":\"281-288\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694802/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1037/bne0000560\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1037/bne0000560","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
A single dose of ketamine enhances early life stress-induced aggression with no effect on fear memory, anxiety-like behavior, or depression-like behavior in mice.
Ketamine is a dissociative anesthetic that has been shown to have antidepressant effects in humans and has been proposed as a potential treatment for mood disorders such as posttraumatic stress disorder and aggression. However, previous studies from our lab and others have demonstrated that ketamine's effects are highly context- and dose-dependent. In a recent study, we found that 10 mg/kg ketamine could exacerbate the effects of early life stress on excessive aggression in mice. To further investigate, the effect of ketamine on moods, such as fear, anxiety, depression, and aggression, we used a mouse model of early life stress, involving chronic social isolation followed by acute traumatic stress in the form of noncontingent, unpredictable foot shock during adolescence. We find this is necessary to induce long-lasting excessive aggression in a novel environment. Seven- to eight-week-old socially isolated mice were given IP injections of 10 mg/kg ketamine 30 min before being subjected to foot shock and then assessed 7 days later for changes in sociability, aggression, mobility, anxiety-like behavior, and depression-like behavior. The results show that ketamine selectively increases long-lasting aggression in mice exposed to foot shock, but does not affect mood-related behaviors or locomotion. These findings suggest that during early life stress, ketamine may exert its effects by specifically targeting aggression brain circuitry that is distinct from brain circuits responsible for nonaggressive social or emotional behaviors. Therefore, while ketamine may be a promising treatment for various mood disorders, caution should be exercised when using ketamine to treat disorders associated with early life stress. (PsycInfo Database Record (c) 2023 APA, all rights reserved).