{"title":"血小板成分和细菌污染:医院展望2022。","authors":"Zbigniew M Szczepiorkowski, Monica B Pagano","doi":"10.1182/hematology.2022000402","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial contamination of platelet units has been one of the most common transfusion-transmitted infections. Approximately 4 to 7 fatalities are being reported to the US Food and Drug Administration (FDA) annually, which cites bacterially contaminated platelet units as the cause. Over the past 3 decades, different mitigation strategies have been introduced to minimize the risk of morbidity and mortality related to contaminated platelet units. The process of platelet collection and manufacturing as well as storage at 20°C to 24°C contributes to higher prevalence of contaminated units. The risk of transfusing bacterially contaminated platelets can be lowered using different types of interventions. Prevention of bacterial contamination can be done by strict adherence to techniques that minimize contamination during unit collection. The detection of bacteria in platelet products can be improved with a combination of rapid testing and bacterial cultures that involve large volume and delayed sampling. Finally, pathogen reduction can inactivate bacteria or other pathogens present in the unit. This article describes different strategies that blood centers and transfusion services have undertaken since October 2021 to meet FDA guidance requirements. Market forces as well as feasibility of different FDA-proposed approaches have limited the number of practical solutions to just a few. In addition, the blood product availability required hospitals to adopt more progressive strategies to provide patients with needed platelet products.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"430-436"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820848/pdf/hem.2022000402.pdf","citationCount":"3","resultStr":"{\"title\":\"Platelet components and bacterial contamination: hospital perspective 2022.\",\"authors\":\"Zbigniew M Szczepiorkowski, Monica B Pagano\",\"doi\":\"10.1182/hematology.2022000402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial contamination of platelet units has been one of the most common transfusion-transmitted infections. Approximately 4 to 7 fatalities are being reported to the US Food and Drug Administration (FDA) annually, which cites bacterially contaminated platelet units as the cause. Over the past 3 decades, different mitigation strategies have been introduced to minimize the risk of morbidity and mortality related to contaminated platelet units. The process of platelet collection and manufacturing as well as storage at 20°C to 24°C contributes to higher prevalence of contaminated units. The risk of transfusing bacterially contaminated platelets can be lowered using different types of interventions. Prevention of bacterial contamination can be done by strict adherence to techniques that minimize contamination during unit collection. The detection of bacteria in platelet products can be improved with a combination of rapid testing and bacterial cultures that involve large volume and delayed sampling. Finally, pathogen reduction can inactivate bacteria or other pathogens present in the unit. This article describes different strategies that blood centers and transfusion services have undertaken since October 2021 to meet FDA guidance requirements. Market forces as well as feasibility of different FDA-proposed approaches have limited the number of practical solutions to just a few. In addition, the blood product availability required hospitals to adopt more progressive strategies to provide patients with needed platelet products.</p>\",\"PeriodicalId\":12973,\"journal\":{\"name\":\"Hematology. American Society of Hematology. Education Program\",\"volume\":\"2022 1\",\"pages\":\"430-436\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820848/pdf/hem.2022000402.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hematology. American Society of Hematology. Education Program\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1182/hematology.2022000402\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hematology. American Society of Hematology. Education Program","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1182/hematology.2022000402","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Platelet components and bacterial contamination: hospital perspective 2022.
Bacterial contamination of platelet units has been one of the most common transfusion-transmitted infections. Approximately 4 to 7 fatalities are being reported to the US Food and Drug Administration (FDA) annually, which cites bacterially contaminated platelet units as the cause. Over the past 3 decades, different mitigation strategies have been introduced to minimize the risk of morbidity and mortality related to contaminated platelet units. The process of platelet collection and manufacturing as well as storage at 20°C to 24°C contributes to higher prevalence of contaminated units. The risk of transfusing bacterially contaminated platelets can be lowered using different types of interventions. Prevention of bacterial contamination can be done by strict adherence to techniques that minimize contamination during unit collection. The detection of bacteria in platelet products can be improved with a combination of rapid testing and bacterial cultures that involve large volume and delayed sampling. Finally, pathogen reduction can inactivate bacteria or other pathogens present in the unit. This article describes different strategies that blood centers and transfusion services have undertaken since October 2021 to meet FDA guidance requirements. Market forces as well as feasibility of different FDA-proposed approaches have limited the number of practical solutions to just a few. In addition, the blood product availability required hospitals to adopt more progressive strategies to provide patients with needed platelet products.