焦点:快速蒙特卡罗方法的相干波动源。

IF 2.4 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION Journal of Synchrotron Radiation Pub Date : 2023-01-01 DOI:10.1107/S1600577522010748
M Siano, G Geloni, B Paroli, D Butti, T Lefèvre, S Mazzoni, G Trad, U Iriso, A A Nosych, L Torino, M A C Potenza
{"title":"焦点:快速蒙特卡罗方法的相干波动源。","authors":"M Siano,&nbsp;G Geloni,&nbsp;B Paroli,&nbsp;D Butti,&nbsp;T Lefèvre,&nbsp;S Mazzoni,&nbsp;G Trad,&nbsp;U Iriso,&nbsp;A A Nosych,&nbsp;L Torino,&nbsp;M A C Potenza","doi":"10.1107/S1600577522010748","DOIUrl":null,"url":null,"abstract":"<p><p>FOCUS (Fast Monte CarlO approach to Coherence of Undulator Sources) is a new GPU-based simulation code to compute the transverse coherence of undulator radiation from ultra-relativistic electrons. The core structure of the code, which is written in the language C++ accelerated with CUDA, combines an analytical description of the emitted electric fields and massively parallel computations on GPUs. The combination is rigorously justified by a statistical description of synchrotron radiation based on a Fourier optics approach. FOCUS is validated by direct comparison with multi-electron Synchrotron Radiation Workshop (SRW) simulations, evidencing a reduction in computation times by up to five orders of magnitude on a consumer laptop. FOCUS is then applied to systematically study the transverse coherence in typical third- and fourth-generation facilities, highlighting peculiar features of undulator sources close to the diffraction limit. FOCUS is aimed at fast evaluation of the transverse coherence of undulator radiation as a function of the electron beam parameters, to support and help prepare more advanced and detailed numerical simulations with traditional codes like SRW.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":"30 Pt 1","pages":"217-226"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814064/pdf/","citationCount":"2","resultStr":"{\"title\":\"FOCUS: fast Monte Carlo approach to coherence of undulator sources.\",\"authors\":\"M Siano,&nbsp;G Geloni,&nbsp;B Paroli,&nbsp;D Butti,&nbsp;T Lefèvre,&nbsp;S Mazzoni,&nbsp;G Trad,&nbsp;U Iriso,&nbsp;A A Nosych,&nbsp;L Torino,&nbsp;M A C Potenza\",\"doi\":\"10.1107/S1600577522010748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>FOCUS (Fast Monte CarlO approach to Coherence of Undulator Sources) is a new GPU-based simulation code to compute the transverse coherence of undulator radiation from ultra-relativistic electrons. The core structure of the code, which is written in the language C++ accelerated with CUDA, combines an analytical description of the emitted electric fields and massively parallel computations on GPUs. The combination is rigorously justified by a statistical description of synchrotron radiation based on a Fourier optics approach. FOCUS is validated by direct comparison with multi-electron Synchrotron Radiation Workshop (SRW) simulations, evidencing a reduction in computation times by up to five orders of magnitude on a consumer laptop. FOCUS is then applied to systematically study the transverse coherence in typical third- and fourth-generation facilities, highlighting peculiar features of undulator sources close to the diffraction limit. FOCUS is aimed at fast evaluation of the transverse coherence of undulator radiation as a function of the electron beam parameters, to support and help prepare more advanced and detailed numerical simulations with traditional codes like SRW.</p>\",\"PeriodicalId\":17114,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\"30 Pt 1\",\"pages\":\"217-226\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814064/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577522010748\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577522010748","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 2

摘要

FOCUS (Fast Monte CarlO approach to Coherence of波动源)是一种新的基于gpu的计算超相对论电子波动源辐射横向相干性的仿真代码。代码的核心结构是用c++语言编写的,使用CUDA加速,结合了对发射电场的分析描述和gpu上的大规模并行计算。基于傅立叶光学方法的同步辐射统计描述严格证明了这一组合。FOCUS通过与多电子同步辐射车间(SRW)模拟的直接比较进行了验证,证明在消费级笔记本电脑上计算时间减少了多达五个数量级。然后应用FOCUS系统地研究了典型的第三代和第四代设备的横向相干性,突出了接近衍射极限的波动源的特有特征。FOCUS旨在快速评估波动辐射的横向相干性作为电子束参数的函数,以支持和帮助用SRW等传统代码准备更先进和详细的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FOCUS: fast Monte Carlo approach to coherence of undulator sources.

FOCUS (Fast Monte CarlO approach to Coherence of Undulator Sources) is a new GPU-based simulation code to compute the transverse coherence of undulator radiation from ultra-relativistic electrons. The core structure of the code, which is written in the language C++ accelerated with CUDA, combines an analytical description of the emitted electric fields and massively parallel computations on GPUs. The combination is rigorously justified by a statistical description of synchrotron radiation based on a Fourier optics approach. FOCUS is validated by direct comparison with multi-electron Synchrotron Radiation Workshop (SRW) simulations, evidencing a reduction in computation times by up to five orders of magnitude on a consumer laptop. FOCUS is then applied to systematically study the transverse coherence in typical third- and fourth-generation facilities, highlighting peculiar features of undulator sources close to the diffraction limit. FOCUS is aimed at fast evaluation of the transverse coherence of undulator radiation as a function of the electron beam parameters, to support and help prepare more advanced and detailed numerical simulations with traditional codes like SRW.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
12.00%
发文量
289
审稿时长
4-8 weeks
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
期刊最新文献
Operando double-edge high-resolution X-ray absorption spectroscopy study of BiVO4 photoanodes Development of dual-beamline photoelectron momentum microscopy for valence orbital analysis Measuring magnetic hysteresis curves with polarized soft X-ray resonant reflectivity High-pressure X-ray photon correlation spectroscopy at fourth-generation synchrotron sources Iterative Bragg peak removal on X-ray absorption spectra with automatic intensity correction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1