{"title":"在暴露于机电刺激前,通过诱导肌动蛋白皮层膜的局部分布来增强悬浮细胞转染。","authors":"Wenjing Huang, Yibo Ma, Naotomo Tottori, Yoko Yamanishi","doi":"10.1007/s10529-023-03382-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>During physical transfection, an electrical field or mechanical force is used to induce cell transfection. We tested if the disruption of a dense actin layer underneath the membrane of a suspended cell enhances cell transfection.</p><p><strong>Results: </strong>A bubble generator was used to electromechanically stimulate suspended cells. To clarify the influence of the actin layer (the actin cortex) on cell transfection efficiency, we used an actin polymerization inhibitor (cytochalasin D) to disrupt the actin cortex before electromechanical stimulation. Without cytochalasin D treatment, signals from the overall actin cortex decreased after electromechanical stimulation. With cytochalasin D treatment, there was localized F-actin aggregation under static conditions. After electromechanical stimulation, there was a partial loss (localized disruption), but no overall disruption, of the actin cortex. With the pretreatment with cytochalasin D, the transfection efficiency of plasmids (4.7, 8.3, or 11 kbp) into NIH/3T3 or UMR-106 cells increased significantly after exposure to electromechanical stimulation.</p><p><strong>Conclusions: </strong>Localized distribution of the actin cortex before exposure to electromechanical stimulation is crucial for inducing a partial loss of the cortex, which improves transfection efficiency and large plasmid delivery.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"1417-1430"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing suspended cell transfection by inducing localized distribution of the membrane actin cortex before exposure to electromechanical stimulation.\",\"authors\":\"Wenjing Huang, Yibo Ma, Naotomo Tottori, Yoko Yamanishi\",\"doi\":\"10.1007/s10529-023-03382-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>During physical transfection, an electrical field or mechanical force is used to induce cell transfection. We tested if the disruption of a dense actin layer underneath the membrane of a suspended cell enhances cell transfection.</p><p><strong>Results: </strong>A bubble generator was used to electromechanically stimulate suspended cells. To clarify the influence of the actin layer (the actin cortex) on cell transfection efficiency, we used an actin polymerization inhibitor (cytochalasin D) to disrupt the actin cortex before electromechanical stimulation. Without cytochalasin D treatment, signals from the overall actin cortex decreased after electromechanical stimulation. With cytochalasin D treatment, there was localized F-actin aggregation under static conditions. After electromechanical stimulation, there was a partial loss (localized disruption), but no overall disruption, of the actin cortex. With the pretreatment with cytochalasin D, the transfection efficiency of plasmids (4.7, 8.3, or 11 kbp) into NIH/3T3 or UMR-106 cells increased significantly after exposure to electromechanical stimulation.</p><p><strong>Conclusions: </strong>Localized distribution of the actin cortex before exposure to electromechanical stimulation is crucial for inducing a partial loss of the cortex, which improves transfection efficiency and large plasmid delivery.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\" \",\"pages\":\"1417-1430\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-023-03382-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-023-03382-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enhancing suspended cell transfection by inducing localized distribution of the membrane actin cortex before exposure to electromechanical stimulation.
Objectives: During physical transfection, an electrical field or mechanical force is used to induce cell transfection. We tested if the disruption of a dense actin layer underneath the membrane of a suspended cell enhances cell transfection.
Results: A bubble generator was used to electromechanically stimulate suspended cells. To clarify the influence of the actin layer (the actin cortex) on cell transfection efficiency, we used an actin polymerization inhibitor (cytochalasin D) to disrupt the actin cortex before electromechanical stimulation. Without cytochalasin D treatment, signals from the overall actin cortex decreased after electromechanical stimulation. With cytochalasin D treatment, there was localized F-actin aggregation under static conditions. After electromechanical stimulation, there was a partial loss (localized disruption), but no overall disruption, of the actin cortex. With the pretreatment with cytochalasin D, the transfection efficiency of plasmids (4.7, 8.3, or 11 kbp) into NIH/3T3 or UMR-106 cells increased significantly after exposure to electromechanical stimulation.
Conclusions: Localized distribution of the actin cortex before exposure to electromechanical stimulation is crucial for inducing a partial loss of the cortex, which improves transfection efficiency and large plasmid delivery.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.