{"title":"一致微分项目函数对连续项目响应模型的影响和检测。","authors":"W Holmes Finch","doi":"10.1177/00131644221111993","DOIUrl":null,"url":null,"abstract":"<p><p>Psychometricians have devoted much research and attention to categorical item responses, leading to the development and widespread use of item response theory for the estimation of model parameters and identification of items that do not perform in the same way for examinees from different population subgroups (e.g., differential item functioning [DIF]). With the increasing use of computer-based measurement, use of items with a continuous response modality is becoming more common. Models for use with these items have been developed and refined in recent years, but less attention has been devoted to investigating DIF for these continuous response models (CRMs). Therefore, the purpose of this simulation study was to compare the performance of three potential methods for assessing DIF for CRMs, including regression, the MIMIC model, and factor invariance testing. Study results revealed that the MIMIC model provided a combination of Type I error control and relatively high power for detecting DIF. Implications of these findings are discussed.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470162/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Impact and Detection of Uniform Differential Item Functioning for Continuous Item Response Models.\",\"authors\":\"W Holmes Finch\",\"doi\":\"10.1177/00131644221111993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Psychometricians have devoted much research and attention to categorical item responses, leading to the development and widespread use of item response theory for the estimation of model parameters and identification of items that do not perform in the same way for examinees from different population subgroups (e.g., differential item functioning [DIF]). With the increasing use of computer-based measurement, use of items with a continuous response modality is becoming more common. Models for use with these items have been developed and refined in recent years, but less attention has been devoted to investigating DIF for these continuous response models (CRMs). Therefore, the purpose of this simulation study was to compare the performance of three potential methods for assessing DIF for CRMs, including regression, the MIMIC model, and factor invariance testing. Study results revealed that the MIMIC model provided a combination of Type I error control and relatively high power for detecting DIF. Implications of these findings are discussed.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644221111993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221111993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The Impact and Detection of Uniform Differential Item Functioning for Continuous Item Response Models.
Psychometricians have devoted much research and attention to categorical item responses, leading to the development and widespread use of item response theory for the estimation of model parameters and identification of items that do not perform in the same way for examinees from different population subgroups (e.g., differential item functioning [DIF]). With the increasing use of computer-based measurement, use of items with a continuous response modality is becoming more common. Models for use with these items have been developed and refined in recent years, but less attention has been devoted to investigating DIF for these continuous response models (CRMs). Therefore, the purpose of this simulation study was to compare the performance of three potential methods for assessing DIF for CRMs, including regression, the MIMIC model, and factor invariance testing. Study results revealed that the MIMIC model provided a combination of Type I error control and relatively high power for detecting DIF. Implications of these findings are discussed.