Flávio B. Gonçalves, Juliane Venturelli S. L., Rosangela H. Loschi
{"title":"基于混合倾斜项目曲线的二分类项目反应理论中的灵活贝叶斯建模","authors":"Flávio B. Gonçalves, Juliane Venturelli S. L., Rosangela H. Loschi","doi":"10.1111/bmsp.12282","DOIUrl":null,"url":null,"abstract":"<p>Most item response theory (IRT) models for dichotomous responses are based on probit or logit link functions which assume a symmetric relationship between the probability of a correct response and the latent traits of individuals taking a test. This assumption restricts the use of those models to the case in which all items behave symmetrically. On the other hand, asymmetric models proposed in the literature impose that all the items in a test behave asymmetrically. This assumption is inappropriate for great majority of tests which are, in general, composed of both symmetric and asymmetric items. Furthermore, a straightforward extension of the existing models in the literature would require a prior selection of the items' symmetry/asymmetry status. This paper proposes a Bayesian IRT model that accounts for symmetric and asymmetric items in a flexible but parsimonious way. That is achieved by assigning a finite mixture prior to the skewness parameter, with one of the mixture components being a point mass at zero. This allows for analyses under both model selection and model averaging approaches. Asymmetric item curves are designed through the centred skew normal distribution, which has a particularly appealing parametrization in terms of parameter interpretation and computational efficiency. An efficient Markov chain Monte Carlo algorithm is proposed to perform Bayesian inference and its performance is investigated in some simulated examples. Finally, the proposed methodology is applied to a data set from a large-scale educational exam in Brazil.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"76 1","pages":"69-86"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Bayesian modelling in dichotomous item response theory using mixtures of skewed item curves\",\"authors\":\"Flávio B. Gonçalves, Juliane Venturelli S. L., Rosangela H. Loschi\",\"doi\":\"10.1111/bmsp.12282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most item response theory (IRT) models for dichotomous responses are based on probit or logit link functions which assume a symmetric relationship between the probability of a correct response and the latent traits of individuals taking a test. This assumption restricts the use of those models to the case in which all items behave symmetrically. On the other hand, asymmetric models proposed in the literature impose that all the items in a test behave asymmetrically. This assumption is inappropriate for great majority of tests which are, in general, composed of both symmetric and asymmetric items. Furthermore, a straightforward extension of the existing models in the literature would require a prior selection of the items' symmetry/asymmetry status. This paper proposes a Bayesian IRT model that accounts for symmetric and asymmetric items in a flexible but parsimonious way. That is achieved by assigning a finite mixture prior to the skewness parameter, with one of the mixture components being a point mass at zero. This allows for analyses under both model selection and model averaging approaches. Asymmetric item curves are designed through the centred skew normal distribution, which has a particularly appealing parametrization in terms of parameter interpretation and computational efficiency. An efficient Markov chain Monte Carlo algorithm is proposed to perform Bayesian inference and its performance is investigated in some simulated examples. Finally, the proposed methodology is applied to a data set from a large-scale educational exam in Brazil.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\"76 1\",\"pages\":\"69-86\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12282\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12282","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Flexible Bayesian modelling in dichotomous item response theory using mixtures of skewed item curves
Most item response theory (IRT) models for dichotomous responses are based on probit or logit link functions which assume a symmetric relationship between the probability of a correct response and the latent traits of individuals taking a test. This assumption restricts the use of those models to the case in which all items behave symmetrically. On the other hand, asymmetric models proposed in the literature impose that all the items in a test behave asymmetrically. This assumption is inappropriate for great majority of tests which are, in general, composed of both symmetric and asymmetric items. Furthermore, a straightforward extension of the existing models in the literature would require a prior selection of the items' symmetry/asymmetry status. This paper proposes a Bayesian IRT model that accounts for symmetric and asymmetric items in a flexible but parsimonious way. That is achieved by assigning a finite mixture prior to the skewness parameter, with one of the mixture components being a point mass at zero. This allows for analyses under both model selection and model averaging approaches. Asymmetric item curves are designed through the centred skew normal distribution, which has a particularly appealing parametrization in terms of parameter interpretation and computational efficiency. An efficient Markov chain Monte Carlo algorithm is proposed to perform Bayesian inference and its performance is investigated in some simulated examples. Finally, the proposed methodology is applied to a data set from a large-scale educational exam in Brazil.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.