{"title":"Anandamide通过调节下丘脑外侧CB1受体的表达,改善大鼠慢性睡眠剥夺诱导模型中的食物摄入和食欲能神经元活性","authors":"Rafie Belali , Seyyed Ali Mard , Seyed Esmaeil Khoshnam , Kowsar Bavarsad , Alireza Sarkaki , Yaghoob Farbood","doi":"10.1016/j.npep.2023.102336","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Sleep deprivation alters orexinergic neuronal activity in the lateral </span>hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. </span>Cannabinoid receptor<span><span> (CBR) expression in this area is involved in modulating the function of orexin<span> neurons. In this study, we investigated the effects of endocannabinoid </span></span>anandamide<span> (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats<span><span> (200–250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and </span>antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (</span></span></span></span><em>p</em> < 0.01), Electrical activity of orexin neurons (<em>p</em> < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (<em>p</em> < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (<em>p</em><span> < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA<span><span> level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the </span>CB1 receptor in the LH in sleep deprived rats.</span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anandamide improves food intake and orexinergic neuronal activity in the chronic sleep deprivation induction model in rats by modulating the expression of the CB1 receptor in the lateral hypothalamus\",\"authors\":\"Rafie Belali , Seyyed Ali Mard , Seyed Esmaeil Khoshnam , Kowsar Bavarsad , Alireza Sarkaki , Yaghoob Farbood\",\"doi\":\"10.1016/j.npep.2023.102336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Sleep deprivation alters orexinergic neuronal activity in the lateral </span>hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. </span>Cannabinoid receptor<span><span> (CBR) expression in this area is involved in modulating the function of orexin<span> neurons. In this study, we investigated the effects of endocannabinoid </span></span>anandamide<span> (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats<span><span> (200–250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and </span>antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (</span></span></span></span><em>p</em> < 0.01), Electrical activity of orexin neurons (<em>p</em> < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (<em>p</em> < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (<em>p</em><span> < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA<span><span> level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the </span>CB1 receptor in the LH in sleep deprived rats.</span></span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143417923000173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417923000173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Anandamide improves food intake and orexinergic neuronal activity in the chronic sleep deprivation induction model in rats by modulating the expression of the CB1 receptor in the lateral hypothalamus
Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200–250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.