基于Aspen Hysys的原油稳定过程模拟

IF 2.6 Q3 ENERGY & FUELS Upstream Oil and Gas Technology Pub Date : 2021-09-01 DOI:10.1016/j.upstre.2021.100039
Hussein Al-Ali
{"title":"基于Aspen Hysys的原油稳定过程模拟","authors":"Hussein Al-Ali","doi":"10.1016/j.upstre.2021.100039","DOIUrl":null,"url":null,"abstract":"<div><p><span>Recently, a light oil from different formations is added to the existing crude oil stabilization plant to associate the production of crude which unfortunately not enough to release off all light components and as a results the true vapor pressure<span> (TVP) exceeds the desired specification of 82737.1 Pa/12 psia for the exported oil. The Simulation results were comparable with industrial data to give a good match between the Aspen Hysys results and the industrial analysis. The existing plant operates in three stages of gas/liquid separators where it is reported that changing production conditions, such as </span></span>inlet temperature<span><span>, dry fluid flow rate, water flow rate and the temperature of the outlet fluid from </span>Fired Heater<span>, do not make the value of TVP within the permissible limits of (68947.6–82737.1) Pa / (10–12) psia. The current work studied the effect of adding a fourth vessel on the production specifications, where it shows a successful results on decreasing the TVP. It was found that, the live crude was successfully stabilized to a TVP of less than 12 psia / 82737.1 Pa when the feed dry fluid flow rate (26.4–105.6) kbd and the minimum base sediment and water cut in the feed stream is 4 Vol%. It is also found that, the temperature of fluid has a significant impact on the crude oil specifications where the inlet fluid temperature should be in range of (43–51.5) ⁰C and the differential temperature across the Fired Heater in range of (16–24) ⁰C with feed temperature range (40–55) ⁰C.</span></span></p></div>","PeriodicalId":101264,"journal":{"name":"Upstream Oil and Gas Technology","volume":"7 ","pages":"Article 100039"},"PeriodicalIF":2.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.upstre.2021.100039","citationCount":"3","resultStr":"{\"title\":\"Process simulation for crude oil stabilization by using Aspen Hysys\",\"authors\":\"Hussein Al-Ali\",\"doi\":\"10.1016/j.upstre.2021.100039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Recently, a light oil from different formations is added to the existing crude oil stabilization plant to associate the production of crude which unfortunately not enough to release off all light components and as a results the true vapor pressure<span> (TVP) exceeds the desired specification of 82737.1 Pa/12 psia for the exported oil. The Simulation results were comparable with industrial data to give a good match between the Aspen Hysys results and the industrial analysis. The existing plant operates in three stages of gas/liquid separators where it is reported that changing production conditions, such as </span></span>inlet temperature<span><span>, dry fluid flow rate, water flow rate and the temperature of the outlet fluid from </span>Fired Heater<span>, do not make the value of TVP within the permissible limits of (68947.6–82737.1) Pa / (10–12) psia. The current work studied the effect of adding a fourth vessel on the production specifications, where it shows a successful results on decreasing the TVP. It was found that, the live crude was successfully stabilized to a TVP of less than 12 psia / 82737.1 Pa when the feed dry fluid flow rate (26.4–105.6) kbd and the minimum base sediment and water cut in the feed stream is 4 Vol%. It is also found that, the temperature of fluid has a significant impact on the crude oil specifications where the inlet fluid temperature should be in range of (43–51.5) ⁰C and the differential temperature across the Fired Heater in range of (16–24) ⁰C with feed temperature range (40–55) ⁰C.</span></span></p></div>\",\"PeriodicalId\":101264,\"journal\":{\"name\":\"Upstream Oil and Gas Technology\",\"volume\":\"7 \",\"pages\":\"Article 100039\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.upstre.2021.100039\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Upstream Oil and Gas Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666260421000098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upstream Oil and Gas Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666260421000098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

摘要

最近,一种来自不同地层的轻质油被添加到现有的原油稳定装置中,以结合原油的生产,不幸的是,原油的生产不足以释放所有轻质油,因此,出口原油的真实蒸汽压(TVP)超过了82737.1 Pa/12 psia的期望规格。仿真结果与工业数据具有可比性,使Aspen Hysys的结果与工业分析结果很好地吻合。现有工厂分三级气/液分离器运行,据报道,改变生产条件,如进口温度、干流体流速、水流流速和燃烧加热器出口流体的温度,不能使TVP值在(68947.6-82737.1)Pa / (10-12) psia的允许范围内。目前的工作是研究增加第四艘船对生产规格的影响,在降低TVP方面取得了成功的结果。结果表明,当进料干流体流量为26.4-105.6 kbd,进料流中最低底泥含水率为4 Vol%时,活性原油的TVP稳定在12 psia / 82737.1 Pa以下。研究还发现,流体温度对原油规格有重大影响,其中进口流体温度应在(43-51.5)⁰C范围内,燃烧加热器的温差应在(16-24)⁰C范围内,进料温度范围为(40-55)⁰C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Process simulation for crude oil stabilization by using Aspen Hysys

Recently, a light oil from different formations is added to the existing crude oil stabilization plant to associate the production of crude which unfortunately not enough to release off all light components and as a results the true vapor pressure (TVP) exceeds the desired specification of 82737.1 Pa/12 psia for the exported oil. The Simulation results were comparable with industrial data to give a good match between the Aspen Hysys results and the industrial analysis. The existing plant operates in three stages of gas/liquid separators where it is reported that changing production conditions, such as inlet temperature, dry fluid flow rate, water flow rate and the temperature of the outlet fluid from Fired Heater, do not make the value of TVP within the permissible limits of (68947.6–82737.1) Pa / (10–12) psia. The current work studied the effect of adding a fourth vessel on the production specifications, where it shows a successful results on decreasing the TVP. It was found that, the live crude was successfully stabilized to a TVP of less than 12 psia / 82737.1 Pa when the feed dry fluid flow rate (26.4–105.6) kbd and the minimum base sediment and water cut in the feed stream is 4 Vol%. It is also found that, the temperature of fluid has a significant impact on the crude oil specifications where the inlet fluid temperature should be in range of (43–51.5) ⁰C and the differential temperature across the Fired Heater in range of (16–24) ⁰C with feed temperature range (40–55) ⁰C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
期刊最新文献
Dynamics of pump jacks with theories and experiments Well perforating—More than reservoir connection A new method for predicting casing wear in highly deviated wells using mud logging data Experimental investigation of bypassed-oil recovery in tight reservoir rock using a two-step CO2 soaking strategy: Effects of fracture geometry A Review of Modern Approaches of Digitalization in Oil and Gas Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1