基于空间注意递归网络特征选择的成瘾脑网络识别。

Q1 Computer Science Brain Informatics Pub Date : 2023-01-10 DOI:10.1186/s40708-022-00182-4
Changwei Gong, Xinyi Chen, Bushra Mughal, Shuqiang Wang
{"title":"基于空间注意递归网络特征选择的成瘾脑网络识别。","authors":"Changwei Gong,&nbsp;Xinyi Chen,&nbsp;Bushra Mughal,&nbsp;Shuqiang Wang","doi":"10.1186/s40708-022-00182-4","DOIUrl":null,"url":null,"abstract":"<p><p>Addiction in the brain is associated with adaptive changes that reshape addiction-related brain regions and lead to functional abnormalities that cause a range of behavioral changes, and functional magnetic resonance imaging (fMRI) studies can reveal complex dynamic patterns of brain functional change. However, it is still a challenge to identify functional brain networks and discover region-level biomarkers between nicotine addiction (NA) and healthy control (HC) groups. To tackle it, we transform the fMRI of the rat brain into a network with biological attributes and propose a novel feature-selected framework to extract and select the features of addictive brain regions and identify these graph-level networks. In this framework, spatial attention recurrent network (SARN) is designed to capture the features with spatial and time-sequential information. And the Bayesian feature selection(BFS) strategy is adopted to optimize the model and improve classification tasks by restricting features. Our experiments on the addiction brain imaging dataset obtain superior identification performance and interpretable biomarkers associated with addiction-relevant brain regions.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832209/pdf/","citationCount":"3","resultStr":"{\"title\":\"Addictive brain-network identification by spatial attention recurrent network with feature selection.\",\"authors\":\"Changwei Gong,&nbsp;Xinyi Chen,&nbsp;Bushra Mughal,&nbsp;Shuqiang Wang\",\"doi\":\"10.1186/s40708-022-00182-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Addiction in the brain is associated with adaptive changes that reshape addiction-related brain regions and lead to functional abnormalities that cause a range of behavioral changes, and functional magnetic resonance imaging (fMRI) studies can reveal complex dynamic patterns of brain functional change. However, it is still a challenge to identify functional brain networks and discover region-level biomarkers between nicotine addiction (NA) and healthy control (HC) groups. To tackle it, we transform the fMRI of the rat brain into a network with biological attributes and propose a novel feature-selected framework to extract and select the features of addictive brain regions and identify these graph-level networks. In this framework, spatial attention recurrent network (SARN) is designed to capture the features with spatial and time-sequential information. And the Bayesian feature selection(BFS) strategy is adopted to optimize the model and improve classification tasks by restricting features. Our experiments on the addiction brain imaging dataset obtain superior identification performance and interpretable biomarkers associated with addiction-relevant brain regions.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"10 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832209/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-022-00182-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-022-00182-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

大脑中的成瘾与适应性变化有关,这些变化重塑了与成瘾相关的大脑区域,并导致导致一系列行为改变的功能异常,功能磁共振成像(fMRI)研究可以揭示大脑功能变化的复杂动态模式。然而,在尼古丁成瘾(NA)组和健康对照组(HC)组之间识别功能性脑网络和发现区域水平的生物标志物仍然是一个挑战。为了解决这一问题,我们将大鼠脑的fMRI转换为具有生物学属性的网络,并提出了一种新的特征选择框架来提取和选择成瘾脑区域的特征,并识别这些图级网络。在这个框架中,空间注意循环网络(SARN)被设计用来捕获具有空间和时间序列信息的特征。采用贝叶斯特征选择(BFS)策略对模型进行优化,通过限制特征来改进分类任务。我们在成瘾脑成像数据集上的实验获得了卓越的识别性能和与成瘾相关脑区域相关的可解释生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addictive brain-network identification by spatial attention recurrent network with feature selection.

Addiction in the brain is associated with adaptive changes that reshape addiction-related brain regions and lead to functional abnormalities that cause a range of behavioral changes, and functional magnetic resonance imaging (fMRI) studies can reveal complex dynamic patterns of brain functional change. However, it is still a challenge to identify functional brain networks and discover region-level biomarkers between nicotine addiction (NA) and healthy control (HC) groups. To tackle it, we transform the fMRI of the rat brain into a network with biological attributes and propose a novel feature-selected framework to extract and select the features of addictive brain regions and identify these graph-level networks. In this framework, spatial attention recurrent network (SARN) is designed to capture the features with spatial and time-sequential information. And the Bayesian feature selection(BFS) strategy is adopted to optimize the model and improve classification tasks by restricting features. Our experiments on the addiction brain imaging dataset obtain superior identification performance and interpretable biomarkers associated with addiction-relevant brain regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline. Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1