{"title":"鳞栉水母幼虫运动神经元的发育和电路,这是一种推定的后脑/脊髓同源物。","authors":"Katarzyna M. Piekarz, Alberto Stolfi","doi":"10.1002/jez.b.23221","DOIUrl":null,"url":null,"abstract":"<p>The Motor Ganglion (MG) is a small collection of neurons that control the swimming movements of the tunicate tadpole larva. Situated at the base of the tail, molecular and functional comparisons suggest that may be a homolog of the spinal cord and/or hindbrain (“rhombospinal” region) of vertebrates. Here we review the most current knowledge of the development, connectivity, functions, and unique identities of the neurons that comprise the MG, drawn mostly from studies in <i>Ciona</i> spp. The simple cell lineages, minimal cellular composition, and comprehensively mapped “connectome” of the <i>Ciona</i> MG all make this an excellent model for studying the development and physiology of motor control in aquatic larvae.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"342 3","pages":"200-211"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and circuitry of the tunicate larval Motor Ganglion, a putative hindbrain/spinal cord homolog\",\"authors\":\"Katarzyna M. Piekarz, Alberto Stolfi\",\"doi\":\"10.1002/jez.b.23221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Motor Ganglion (MG) is a small collection of neurons that control the swimming movements of the tunicate tadpole larva. Situated at the base of the tail, molecular and functional comparisons suggest that may be a homolog of the spinal cord and/or hindbrain (“rhombospinal” region) of vertebrates. Here we review the most current knowledge of the development, connectivity, functions, and unique identities of the neurons that comprise the MG, drawn mostly from studies in <i>Ciona</i> spp. The simple cell lineages, minimal cellular composition, and comprehensively mapped “connectome” of the <i>Ciona</i> MG all make this an excellent model for studying the development and physiology of motor control in aquatic larvae.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":\"342 3\",\"pages\":\"200-211\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23221\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23221","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Development and circuitry of the tunicate larval Motor Ganglion, a putative hindbrain/spinal cord homolog
The Motor Ganglion (MG) is a small collection of neurons that control the swimming movements of the tunicate tadpole larva. Situated at the base of the tail, molecular and functional comparisons suggest that may be a homolog of the spinal cord and/or hindbrain (“rhombospinal” region) of vertebrates. Here we review the most current knowledge of the development, connectivity, functions, and unique identities of the neurons that comprise the MG, drawn mostly from studies in Ciona spp. The simple cell lineages, minimal cellular composition, and comprehensively mapped “connectome” of the Ciona MG all make this an excellent model for studying the development and physiology of motor control in aquatic larvae.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.