住院时间长度的半参数时间-事件模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-09-15 DOI:10.1111/rssc.12593
Yang Li, Hao Liu, Xiaoshen Wang, Wanzhu Tu
{"title":"住院时间长度的半参数时间-事件模型","authors":"Yang Li,&nbsp;Hao Liu,&nbsp;Xiaoshen Wang,&nbsp;Wanzhu Tu","doi":"10.1111/rssc.12593","DOIUrl":null,"url":null,"abstract":"<p>Length of stay (LOS) is an essential metric for the quality of hospital care. Published works on LOS analysis have primarily focused on skewed LOS distributions and the influences of patient diagnostic characteristics. Few authors have considered the events that terminate a hospital stay: Both successful discharge and death could end a hospital stay but with completely different implications. Modelling the time to the first occurrence of discharge or death obscures the true nature of LOS. In this research, we propose a structure that simultaneously models the probabilities of discharge and death. The model has a flexible formulation that accounts for both additive and multiplicative effects of factors influencing the occurrence of death and discharge. We present asymptotic properties of the parameter estimates so that valid inference can be performed for the parametric as well as nonparametric model components. Simulation studies confirmed the good finite-sample performance of the proposed method. As the research is motivated by practical issues encountered in LOS analysis, we analysed data from two real clinical studies to showcase the general applicability of the proposed model.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e7/b9/RSSC-71-1623.PMC9826400.pdf","citationCount":"0","resultStr":"{\"title\":\"Semi-parametric time-to-event modelling of lengths of hospital stays\",\"authors\":\"Yang Li,&nbsp;Hao Liu,&nbsp;Xiaoshen Wang,&nbsp;Wanzhu Tu\",\"doi\":\"10.1111/rssc.12593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Length of stay (LOS) is an essential metric for the quality of hospital care. Published works on LOS analysis have primarily focused on skewed LOS distributions and the influences of patient diagnostic characteristics. Few authors have considered the events that terminate a hospital stay: Both successful discharge and death could end a hospital stay but with completely different implications. Modelling the time to the first occurrence of discharge or death obscures the true nature of LOS. In this research, we propose a structure that simultaneously models the probabilities of discharge and death. The model has a flexible formulation that accounts for both additive and multiplicative effects of factors influencing the occurrence of death and discharge. We present asymptotic properties of the parameter estimates so that valid inference can be performed for the parametric as well as nonparametric model components. Simulation studies confirmed the good finite-sample performance of the proposed method. As the research is motivated by practical issues encountered in LOS analysis, we analysed data from two real clinical studies to showcase the general applicability of the proposed model.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e7/b9/RSSC-71-1623.PMC9826400.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12593\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12593","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

住院时间(LOS)是衡量医院护理质量的重要指标。已发表的LOS分析作品主要集中在斜斜的LOS分布和患者诊断特征的影响。很少有作者考虑到终止住院的事件:成功出院和死亡都可能结束住院,但具有完全不同的含义。模拟第一次放电或死亡的时间模糊了LOS的真实性质。在本研究中,我们提出了一个同时模拟放电和死亡概率的结构。该模型具有灵活的公式,可以考虑影响死亡和放电发生的因素的加性和乘法效应。我们给出了参数估计的渐近性质,从而可以对参数和非参数模型分量进行有效的推理。仿真研究证实了该方法具有良好的有限样本性能。由于研究的动机是LOS分析中遇到的实际问题,我们分析了两个真实临床研究的数据,以展示所提出模型的一般适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-parametric time-to-event modelling of lengths of hospital stays

Length of stay (LOS) is an essential metric for the quality of hospital care. Published works on LOS analysis have primarily focused on skewed LOS distributions and the influences of patient diagnostic characteristics. Few authors have considered the events that terminate a hospital stay: Both successful discharge and death could end a hospital stay but with completely different implications. Modelling the time to the first occurrence of discharge or death obscures the true nature of LOS. In this research, we propose a structure that simultaneously models the probabilities of discharge and death. The model has a flexible formulation that accounts for both additive and multiplicative effects of factors influencing the occurrence of death and discharge. We present asymptotic properties of the parameter estimates so that valid inference can be performed for the parametric as well as nonparametric model components. Simulation studies confirmed the good finite-sample performance of the proposed method. As the research is motivated by practical issues encountered in LOS analysis, we analysed data from two real clinical studies to showcase the general applicability of the proposed model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1