[原位凝胶作为鼻内注射疫苗的现代方法]。

Q3 Medicine Voprosy virusologii Pub Date : 2022-11-19 DOI:10.36233/0507-4088-139
E O Bakhrushina, J B Mikhel, V M Kondratieva, N B Demina, T V Grebennikova
{"title":"[原位凝胶作为鼻内注射疫苗的现代方法]。","authors":"E O Bakhrushina,&nbsp;J B Mikhel,&nbsp;V M Kondratieva,&nbsp;N B Demina,&nbsp;T V Grebennikova","doi":"10.36233/0507-4088-139","DOIUrl":null,"url":null,"abstract":"<p><p>The continuous emergence of new pathogens and the evolution of microbial drug resistance make it absolutely necessary to develop innovative, effective vaccination strategies. Use of nasal vaccination can increase convenience, safety, cause both local and systemic immune reactions. Intranasal administration nevertheless has a number of shortcomings that can be overcome by using the latest achievements of pharmaceutical science. One of the aspects of such solution may be the use of systems for the production of intranasal vaccines in situ polymer compositions that provide a directed sol-gel transition controlled by the physiological conditions of the nasal cavity. At the same time, the gelation of the administered dose in contact with the nasal mucosa involves prolonged exposure of the drug at the injection site, greater mucoadhesion, counteraction to mucociliary clearance, modified and more complete release. A number of both foreign and domestic manufacturers produces polymers such as chitosan, gums, polyoxyethylene and polyoxypropylene block copolymers (poloxamers, proxanols), carbomers. For effective pharmaceutical development of new intranasal IBD delivery systems corresponding to the QbD concept, not only the knowledge of the range of excipients is necessary, but also simple, accessible, and reproducible methods for determining indicators that define the critical parameters of such delivery systems. In accordance with the conducted scientific search, the main indicators of standardization of in situ intranasal systems were identified: temperature and time of gel formation, gel strength, rheological characteristics, mucoadhesion, release, nasal mucociliary clearance time.</p>","PeriodicalId":23669,"journal":{"name":"Voprosy virusologii","volume":"67 5","pages":"395-402"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"[<i>In situ</i> gels as a modern method of intranasal vaccine delivery].\",\"authors\":\"E O Bakhrushina,&nbsp;J B Mikhel,&nbsp;V M Kondratieva,&nbsp;N B Demina,&nbsp;T V Grebennikova\",\"doi\":\"10.36233/0507-4088-139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The continuous emergence of new pathogens and the evolution of microbial drug resistance make it absolutely necessary to develop innovative, effective vaccination strategies. Use of nasal vaccination can increase convenience, safety, cause both local and systemic immune reactions. Intranasal administration nevertheless has a number of shortcomings that can be overcome by using the latest achievements of pharmaceutical science. One of the aspects of such solution may be the use of systems for the production of intranasal vaccines in situ polymer compositions that provide a directed sol-gel transition controlled by the physiological conditions of the nasal cavity. At the same time, the gelation of the administered dose in contact with the nasal mucosa involves prolonged exposure of the drug at the injection site, greater mucoadhesion, counteraction to mucociliary clearance, modified and more complete release. A number of both foreign and domestic manufacturers produces polymers such as chitosan, gums, polyoxyethylene and polyoxypropylene block copolymers (poloxamers, proxanols), carbomers. For effective pharmaceutical development of new intranasal IBD delivery systems corresponding to the QbD concept, not only the knowledge of the range of excipients is necessary, but also simple, accessible, and reproducible methods for determining indicators that define the critical parameters of such delivery systems. In accordance with the conducted scientific search, the main indicators of standardization of in situ intranasal systems were identified: temperature and time of gel formation, gel strength, rheological characteristics, mucoadhesion, release, nasal mucociliary clearance time.</p>\",\"PeriodicalId\":23669,\"journal\":{\"name\":\"Voprosy virusologii\",\"volume\":\"67 5\",\"pages\":\"395-402\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Voprosy virusologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36233/0507-4088-139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Voprosy virusologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36233/0507-4088-139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

新病原体的不断出现和微生物耐药性的演变使制定创新、有效的疫苗接种战略成为绝对必要的。使用鼻腔接种疫苗可以增加便利性,安全性,引起局部和全身免疫反应。然而,鼻内给药有许多缺点,可以通过使用制药科学的最新成果来克服。这种解决方案的一个方面可能是使用用于生产鼻腔内疫苗的原位聚合物组合物的系统,该组合物提供由鼻腔的生理条件控制的定向溶胶-凝胶过渡。同时,给药剂量与鼻粘膜接触的凝胶化涉及药物在注射部位的长时间暴露,更大的粘膜粘附,对粘膜纤毛清除的对抗,修饰和更完全的释放。一些国外和国内的制造商生产聚合物,如壳聚糖,树胶,聚氧乙烯和聚氧丙烯嵌段共聚物(聚氧胺,比邻醇),卡波姆。为了有效地开发符合QbD概念的新型鼻内IBD给药系统,不仅需要对辅料范围的了解,而且需要简单、可获取和可重复的方法来确定定义此类给药系统关键参数的指标。根据所进行的科学检索,确定了原位鼻内系统标准化的主要指标:凝胶形成的温度和时间、凝胶强度、流变特性、黏附、释放、鼻粘膜纤毛清除时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[In situ gels as a modern method of intranasal vaccine delivery].

The continuous emergence of new pathogens and the evolution of microbial drug resistance make it absolutely necessary to develop innovative, effective vaccination strategies. Use of nasal vaccination can increase convenience, safety, cause both local and systemic immune reactions. Intranasal administration nevertheless has a number of shortcomings that can be overcome by using the latest achievements of pharmaceutical science. One of the aspects of such solution may be the use of systems for the production of intranasal vaccines in situ polymer compositions that provide a directed sol-gel transition controlled by the physiological conditions of the nasal cavity. At the same time, the gelation of the administered dose in contact with the nasal mucosa involves prolonged exposure of the drug at the injection site, greater mucoadhesion, counteraction to mucociliary clearance, modified and more complete release. A number of both foreign and domestic manufacturers produces polymers such as chitosan, gums, polyoxyethylene and polyoxypropylene block copolymers (poloxamers, proxanols), carbomers. For effective pharmaceutical development of new intranasal IBD delivery systems corresponding to the QbD concept, not only the knowledge of the range of excipients is necessary, but also simple, accessible, and reproducible methods for determining indicators that define the critical parameters of such delivery systems. In accordance with the conducted scientific search, the main indicators of standardization of in situ intranasal systems were identified: temperature and time of gel formation, gel strength, rheological characteristics, mucoadhesion, release, nasal mucociliary clearance time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Voprosy virusologii
Voprosy virusologii Medicine-Infectious Diseases
CiteScore
2.00
自引率
0.00%
发文量
48
期刊介绍: The journal deals with advances in virology in Russia and abroad. It publishes papers dealing with investigations of viral diseases of man, animals and plants, the results of experimental research on different problems of general and special virology. The journal publishes materials are which promote introduction into practice of the achievements of the virological science in the eradication and incidence reduction of infectious diseases, as well as their diagnosis, treatment and prevention. The reader will find a description of new methods of investigation, new apparatus and devices.
期刊最新文献
[Evaluation of the effectiveness of chemical inactivation and immunogenicity of the Omicron variant of the SARS-CoV-2 virus]. A preregistered meta-meta-analysis on the global distribution of Hepatotropic Viruses. Comparative analysis of whole-genome sequences of African swine fever virus (Asfarviridae: Asfivirus) isolates сollected on the territory of the left bank of the Dnieper River in 2023. Defective HIV proviruses: possible involvement in the HIV infection pathogenesis. Evaluation of anti-HIV-1 (Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus type 1) activity of 6HP and 3TC in vitro using MT-4 cell line variants with different replicative activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1