一种高效蓝色荧光有机发光二极管的敏化策略。

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers of Optoelectronics Pub Date : 2022-11-10 DOI:10.1007/s12200-022-00046-z
Yalei Duan, Runda Guo, Yaxiong Wang, Kaiyuan Di, Lei Wang
{"title":"一种高效蓝色荧光有机发光二极管的敏化策略。","authors":"Yalei Duan,&nbsp;Runda Guo,&nbsp;Yaxiong Wang,&nbsp;Kaiyuan Di,&nbsp;Lei Wang","doi":"10.1007/s12200-022-00046-z","DOIUrl":null,"url":null,"abstract":"<p><p>Highly efficient blue fluorescent materials have recently attracted great interest for organic light-emitting diode (OLED) application. Here, two new pyrene based organic molecules consisting of a highly rigid skeleton, namely SPy and DPy, are developed. These two blue light emitters exhibit excellent thermal stability. The experiment reveals that the full-width at half-maximum (FWHM) of the emission spectrum can be tuned by introducing different amounts of 9,9-diphenyl-N-phenyl-9H-fluoren-2-amine on pyrene units. The FWHM of the emission spectrum is only 37 nm in diluted toluene solution for DPy. Furthermore, highly efficient blue OLEDs are obtained by thermally activated delayed fluorescence (TADF) sensitization strategy. The blue fluorescent OLEDs utilizing DPy as emitters achieve a maximum external quantum efficiency (EQE) of 10.4% with the electroluminescence (EL) peak/FWHM of 480 nm/49 nm. Particularly, the EQE of DPy-based device is boosted from 2.6% in non-doped device to 10.4% in DMAc-DPS TADF sensitized fluorescence (TSF) device, which is a 400% enhancement. Therefore, this work demonstrates that the TSF strategy is promising for highly efficient fluorescent OLEDs application in wide-color-gamut display field.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"15 1","pages":"44"},"PeriodicalIF":4.1000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756245/pdf/","citationCount":"2","resultStr":"{\"title\":\"A sensitization strategy for highly efficient blue fluorescent organic light-emitting diodes.\",\"authors\":\"Yalei Duan,&nbsp;Runda Guo,&nbsp;Yaxiong Wang,&nbsp;Kaiyuan Di,&nbsp;Lei Wang\",\"doi\":\"10.1007/s12200-022-00046-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Highly efficient blue fluorescent materials have recently attracted great interest for organic light-emitting diode (OLED) application. Here, two new pyrene based organic molecules consisting of a highly rigid skeleton, namely SPy and DPy, are developed. These two blue light emitters exhibit excellent thermal stability. The experiment reveals that the full-width at half-maximum (FWHM) of the emission spectrum can be tuned by introducing different amounts of 9,9-diphenyl-N-phenyl-9H-fluoren-2-amine on pyrene units. The FWHM of the emission spectrum is only 37 nm in diluted toluene solution for DPy. Furthermore, highly efficient blue OLEDs are obtained by thermally activated delayed fluorescence (TADF) sensitization strategy. The blue fluorescent OLEDs utilizing DPy as emitters achieve a maximum external quantum efficiency (EQE) of 10.4% with the electroluminescence (EL) peak/FWHM of 480 nm/49 nm. Particularly, the EQE of DPy-based device is boosted from 2.6% in non-doped device to 10.4% in DMAc-DPS TADF sensitized fluorescence (TSF) device, which is a 400% enhancement. Therefore, this work demonstrates that the TSF strategy is promising for highly efficient fluorescent OLEDs application in wide-color-gamut display field.</p>\",\"PeriodicalId\":12685,\"journal\":{\"name\":\"Frontiers of Optoelectronics\",\"volume\":\"15 1\",\"pages\":\"44\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756245/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12200-022-00046-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-022-00046-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

近年来,高效蓝光荧光材料在有机发光二极管(OLED)中的应用引起了人们的极大兴趣。本文开发了两种新的基于芘的高刚性骨架有机分子,即SPy和DPy。这两个蓝光发射器表现出优异的热稳定性。实验表明,在芘单元上引入不同量的9,9-二苯基- n-苯基- 9h -芴-2胺可以调节发射光谱的半最大值全宽度。DPy在稀释甲苯溶液中发射光谱的波峰宽仅为37 nm。此外,通过热激活延迟荧光(TADF)敏化策略获得了高效的蓝色oled。利用DPy作为发射体的蓝色荧光oled的最大外量子效率(EQE)为10.4%,电致发光(EL)峰值/FWHM为480 nm/49 nm。特别是,DMAc-DPS TADF敏化荧光(TSF)器件的EQE从未掺杂器件的2.6%提高到10.4%,提高了400%。因此,本研究表明,TSF策略有望在宽色域显示领域应用于高效荧光oled。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A sensitization strategy for highly efficient blue fluorescent organic light-emitting diodes.

Highly efficient blue fluorescent materials have recently attracted great interest for organic light-emitting diode (OLED) application. Here, two new pyrene based organic molecules consisting of a highly rigid skeleton, namely SPy and DPy, are developed. These two blue light emitters exhibit excellent thermal stability. The experiment reveals that the full-width at half-maximum (FWHM) of the emission spectrum can be tuned by introducing different amounts of 9,9-diphenyl-N-phenyl-9H-fluoren-2-amine on pyrene units. The FWHM of the emission spectrum is only 37 nm in diluted toluene solution for DPy. Furthermore, highly efficient blue OLEDs are obtained by thermally activated delayed fluorescence (TADF) sensitization strategy. The blue fluorescent OLEDs utilizing DPy as emitters achieve a maximum external quantum efficiency (EQE) of 10.4% with the electroluminescence (EL) peak/FWHM of 480 nm/49 nm. Particularly, the EQE of DPy-based device is boosted from 2.6% in non-doped device to 10.4% in DMAc-DPS TADF sensitized fluorescence (TSF) device, which is a 400% enhancement. Therefore, this work demonstrates that the TSF strategy is promising for highly efficient fluorescent OLEDs application in wide-color-gamut display field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
期刊最新文献
Correction: White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions. Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators. Vehicular Mini-LED backlight display inspection based on residual global context mechanism. Plasma photonic crystal 'kaleidoscope' with flexible control of topology and electromagnetism. Information processing at the speed of light.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1