在自由行为的犬科动物身上植入慢性神经植入物的自动睡眠分类。

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of neural engineering Pub Date : 2023-08-10 DOI:10.1088/1741-2552/aced21
Filip Mivalt, Vladimir Sladky, Samuel Worrell, Nicholas M Gregg, Irena Balzekas, Inyong Kim, Su-Youne Chang, Daniel R Montonye, Andrea Duque-Lopez, Martina Krakorova, Tereza Pridalova, Kamila Lepkova, Benjamin H Brinkmann, Kai J Miller, Jamie J Van Gompel, Timothy Denison, Timothy J Kaufmann, Steven A Messina, Erik K St Louis, Vaclav Kremen, Gregory A Worrell
{"title":"在自由行为的犬科动物身上植入慢性神经植入物的自动睡眠分类。","authors":"Filip Mivalt, Vladimir Sladky, Samuel Worrell, Nicholas M Gregg, Irena Balzekas, Inyong Kim, Su-Youne Chang, Daniel R Montonye, Andrea Duque-Lopez, Martina Krakorova, Tereza Pridalova, Kamila Lepkova, Benjamin H Brinkmann, Kai J Miller, Jamie J Van Gompel, Timothy Denison, Timothy J Kaufmann, Steven A Messina, Erik K St Louis, Vaclav Kremen, Gregory A Worrell","doi":"10.1088/1741-2552/aced21","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.<i>Approach.</i>Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.<i>Main results</i>. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;<i>p</i>< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;<i>p</i>< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;<i>p</i>< 0.001).<i>Significance.</i>These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"20 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480092/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated sleep classification with chronic neural implants in freely behaving canines.\",\"authors\":\"Filip Mivalt, Vladimir Sladky, Samuel Worrell, Nicholas M Gregg, Irena Balzekas, Inyong Kim, Su-Youne Chang, Daniel R Montonye, Andrea Duque-Lopez, Martina Krakorova, Tereza Pridalova, Kamila Lepkova, Benjamin H Brinkmann, Kai J Miller, Jamie J Van Gompel, Timothy Denison, Timothy J Kaufmann, Steven A Messina, Erik K St Louis, Vaclav Kremen, Gregory A Worrell\",\"doi\":\"10.1088/1741-2552/aced21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.<i>Approach.</i>Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.<i>Main results</i>. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;<i>p</i>< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;<i>p</i>< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;<i>p</i>< 0.001).<i>Significance.</i>These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.</p>\",\"PeriodicalId\":16753,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480092/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/aced21\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/aced21","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目标。在此,我们开发并验证了一种基于脑电图的自动睡眠-觉醒分类器,该分类器使用来自同步视频、加速度计、头皮脑电图(EEG)和脑电图监测的专家睡眠标签。视频、头皮脑电图和加速度计记录由经过委员会认证的睡眠专家手动评分,分为睡眠-觉醒状态类别:清醒、快速眼动(REM)睡眠和三个非快速眼动睡眠类别(NREM1、2、3)。专家标签用于训练、验证和测试全自动脑电图睡眠-觉醒分类器。主要的结果。基于eeg的分类器总体分类精度为0.878±0.055,Cohen’s Kappa评分为0.786±0.090。随后,我们使用基于脑电图的自动分类器对自由行为的狗进行了数周的睡眠调查。研究结果表明,狗狗一天中有相当多的时间在睡觉,但白天小睡睡眠的特点与夜间睡眠的特点有三个关键区别:白天,有更少的非快速眼动睡眠周期(10.81±2.34周期每天每晚和22.39±3.88周期;p < 0.001),非快速眼动睡眠短周期持续时间(13.83±8.50分钟每天每晚和15.09±8.55分钟;p < 0.001),和狗花更大比例的睡眠时间在非快速眼动睡眠,夜间睡眠相比更少的时间在快速眼动睡眠(NREM 0.88±0.09,状态REM非快速眼动睡眠每天0.12±0.09和0.80±0.08,0.20±0.08雷姆每晚;.Significance p < 0.001)。这些结果支持了自动脑电睡眠-觉醒分类器用于犬类行为研究的可行性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated sleep classification with chronic neural implants in freely behaving canines.

Objective.Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Approach.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;p< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;p< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;p< 0.001).Significance.These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neural engineering
Journal of neural engineering 工程技术-工程:生物医学
CiteScore
7.80
自引率
12.50%
发文量
319
审稿时长
4.2 months
期刊介绍: The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels. The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.
期刊最新文献
Building consensus on clinical outcome assessments for BCI devices. A summary of the 10th BCI society meeting 2023 workshop. o-CLEAN: a novel multi-stage algorithm for the ocular artifacts' correction from EEG data in out-of-the-lab applications. PDMS/CNT electrodes with bioamplifier for practical in-the-ear and conventional biosignal recordings. DOCTer: a novel EEG-based diagnosis framework for disorders of consciousness. I see artifacts: ICA-based EEG artifact removal does not improve deep network decoding across three BCI tasks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1