毒物病理学论坛:为制药行业的毒物病理学建立最先进的数字图像数据资源的路线图。

IF 1.4 4区 医学 Q3 PATHOLOGY Toxicologic Pathology Pub Date : 2022-12-01 DOI:10.1177/01926233221132747
Xing-Yue Ge, Juergen Funk, Tom Albrecht, Merima Birkhimer, Moritz Gilsdorf, Matthew Hayes, Fangyao Hu, Pierre Maliver, Mark McCreary, Trung Nguyen, Fernando Romero-Palomo, Shanon Seger, Reina N Fuji, Vanessa Schumacher, Ruth Sullivan
{"title":"毒物病理学论坛:为制药行业的毒物病理学建立最先进的数字图像数据资源的路线图。","authors":"Xing-Yue Ge,&nbsp;Juergen Funk,&nbsp;Tom Albrecht,&nbsp;Merima Birkhimer,&nbsp;Moritz Gilsdorf,&nbsp;Matthew Hayes,&nbsp;Fangyao Hu,&nbsp;Pierre Maliver,&nbsp;Mark McCreary,&nbsp;Trung Nguyen,&nbsp;Fernando Romero-Palomo,&nbsp;Shanon Seger,&nbsp;Reina N Fuji,&nbsp;Vanessa Schumacher,&nbsp;Ruth Sullivan","doi":"10.1177/01926233221132747","DOIUrl":null,"url":null,"abstract":"<p><p>Digitization of histologic slides brings with it the promise of enhanced toxicologic pathology practice through the increased application of computational methods. However, the development of these advanced methods requires access to substrate image data, that is, whole slide images (WSIs). Deep learning methods, in particular, rely on extensive training data to develop robust algorithms. As a result, pharmaceutical companies interested in leveraging computational methods in their digital pathology workflows must first invest in data infrastructure to enable data access for both data scientists and pathologists. The process of building robust image data resources is challenging and includes considerations of generation, curation, and storage of WSI files, and WSI access including via linked metadata. This opinion piece describes the collective experience of building resources for WSI data in the Roche group. We elaborate on the challenges encountered and solutions developed with the goal of providing examples of how to build a data resource for digital pathology analytics in the pharmaceutical industry.</p>","PeriodicalId":23113,"journal":{"name":"Toxicologic Pathology","volume":"50 8","pages":"942-949"},"PeriodicalIF":1.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicologic Pathology Forum: A Roadmap for Building State-of-the-Art Digital Image Data Resources for Toxicologic Pathology in the Pharmaceutical Industry.\",\"authors\":\"Xing-Yue Ge,&nbsp;Juergen Funk,&nbsp;Tom Albrecht,&nbsp;Merima Birkhimer,&nbsp;Moritz Gilsdorf,&nbsp;Matthew Hayes,&nbsp;Fangyao Hu,&nbsp;Pierre Maliver,&nbsp;Mark McCreary,&nbsp;Trung Nguyen,&nbsp;Fernando Romero-Palomo,&nbsp;Shanon Seger,&nbsp;Reina N Fuji,&nbsp;Vanessa Schumacher,&nbsp;Ruth Sullivan\",\"doi\":\"10.1177/01926233221132747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Digitization of histologic slides brings with it the promise of enhanced toxicologic pathology practice through the increased application of computational methods. However, the development of these advanced methods requires access to substrate image data, that is, whole slide images (WSIs). Deep learning methods, in particular, rely on extensive training data to develop robust algorithms. As a result, pharmaceutical companies interested in leveraging computational methods in their digital pathology workflows must first invest in data infrastructure to enable data access for both data scientists and pathologists. The process of building robust image data resources is challenging and includes considerations of generation, curation, and storage of WSI files, and WSI access including via linked metadata. This opinion piece describes the collective experience of building resources for WSI data in the Roche group. We elaborate on the challenges encountered and solutions developed with the goal of providing examples of how to build a data resource for digital pathology analytics in the pharmaceutical industry.</p>\",\"PeriodicalId\":23113,\"journal\":{\"name\":\"Toxicologic Pathology\",\"volume\":\"50 8\",\"pages\":\"942-949\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicologic Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/01926233221132747\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/01926233221132747","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过增加计算方法的应用,组织切片的数字化带来了增强毒理学病理学实践的希望。然而,这些先进方法的发展需要访问衬底图像数据,即整个幻灯片图像(wsi)。特别是深度学习方法,依赖于大量的训练数据来开发健壮的算法。因此,有兴趣在数字病理工作流程中利用计算方法的制药公司必须首先投资于数据基础设施,以便数据科学家和病理学家能够访问数据。构建健壮的图像数据资源的过程具有挑战性,需要考虑WSI文件的生成、管理和存储,以及通过链接元数据访问WSI。这篇观点文章描述了Roche集团为WSI数据构建资源的集体经验。我们详细阐述了遇到的挑战和开发的解决方案,目的是提供如何为制药行业的数字病理分析构建数据资源的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toxicologic Pathology Forum: A Roadmap for Building State-of-the-Art Digital Image Data Resources for Toxicologic Pathology in the Pharmaceutical Industry.

Digitization of histologic slides brings with it the promise of enhanced toxicologic pathology practice through the increased application of computational methods. However, the development of these advanced methods requires access to substrate image data, that is, whole slide images (WSIs). Deep learning methods, in particular, rely on extensive training data to develop robust algorithms. As a result, pharmaceutical companies interested in leveraging computational methods in their digital pathology workflows must first invest in data infrastructure to enable data access for both data scientists and pathologists. The process of building robust image data resources is challenging and includes considerations of generation, curation, and storage of WSI files, and WSI access including via linked metadata. This opinion piece describes the collective experience of building resources for WSI data in the Roche group. We elaborate on the challenges encountered and solutions developed with the goal of providing examples of how to build a data resource for digital pathology analytics in the pharmaceutical industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicologic Pathology
Toxicologic Pathology 医学-病理学
CiteScore
4.70
自引率
20.00%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Toxicologic Pathology is dedicated to the promotion of human, animal, and environmental health through the dissemination of knowledge, techniques, and guidelines to enhance the understanding and practice of toxicologic pathology. Toxicologic Pathology, the official journal of the Society of Toxicologic Pathology, will publish Original Research Articles, Symposium Articles, Review Articles, Meeting Reports, New Techniques, and Position Papers that are relevant to toxicologic pathology.
期刊最新文献
Systemic Toxicity of Recombinant Adeno-Associated Virus Gene Therapy Vectors. Session 4: mRNA and Self-Amplifying RNA (saRNA): Opportunities for Disease Prevention and Therapy. Opinion on the Importance of Sharing Toxicologic Pathology Data for Educational and/or Scientific Purposes. Historical Control Background Incidence of Spontaneous Nonneoplastic Lesions of Sprague Dawley Rats in 104-Week Carcinogenicity Studies. Exogenous Growth Hormone Exacerbates Post-Irradiation Atherosclerosis in Susceptible Epicardial Coronary Arteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1