{"title":"环状RNA hsa_circ_0075323通过调节自噬促进胶质母细胞瘤细胞的增殖和侵袭。","authors":"Wenrui Zhang, Zhonggang Shi, Shouren Chen, Shaoshan Shen, Songjie Tu, Jian Yang, Yongming Qiu, Yingying Lin, Xuejun Dai","doi":"10.1186/s13008-023-00084-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Protein p62 (sequestosome 1) encoded by gene SQSTM1 plays a vital role in mediating protectively selective autophagy in tumor cells under stressed conditions. CircSQSTM1 (hsa_circ_0075323) is a circular transcript generated from gene SQSTM1 (chr5:179260586-179260782) by back-splicing. However, the potential role of hsa_hsa_circ_0075323 in glioblastoma (GBM) remains unclear. Here, we aimed to explore the biological function of hsa_circ_0075323 in GBM and its relationship with autophagy regulation.</p><p><strong>Results: </strong>Hsa_circ_0075323 is highly expressed in GBM cells and mainly locates in the cytoplasm. Inhibition of hsa_circ_0075323 in U87-MG and T98G cells attenuated proliferation and invasion ability significantly, while upregulation of has_ circ_0075323 enhanced proliferation and migration of U251-MG and A172 cells. Mechanistically, depletion of hsa_circ_0075323 in GBM cells resulted in impaired autophagy, as indicated by increased expression of p62 and decreased expression of LC3B.</p><p><strong>Conclusions: </strong>Hsa_circ_0075323 regulates p62-mediated autophagy pathway to promote GBM progression and may serve as a prognostic biomarker potentially.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"1"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843830/pdf/","citationCount":"2","resultStr":"{\"title\":\"Circular RNA hsa_circ_0075323 promotes glioblastoma cells proliferation and invasion via regulation of autophagy.\",\"authors\":\"Wenrui Zhang, Zhonggang Shi, Shouren Chen, Shaoshan Shen, Songjie Tu, Jian Yang, Yongming Qiu, Yingying Lin, Xuejun Dai\",\"doi\":\"10.1186/s13008-023-00084-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Protein p62 (sequestosome 1) encoded by gene SQSTM1 plays a vital role in mediating protectively selective autophagy in tumor cells under stressed conditions. CircSQSTM1 (hsa_circ_0075323) is a circular transcript generated from gene SQSTM1 (chr5:179260586-179260782) by back-splicing. However, the potential role of hsa_hsa_circ_0075323 in glioblastoma (GBM) remains unclear. Here, we aimed to explore the biological function of hsa_circ_0075323 in GBM and its relationship with autophagy regulation.</p><p><strong>Results: </strong>Hsa_circ_0075323 is highly expressed in GBM cells and mainly locates in the cytoplasm. Inhibition of hsa_circ_0075323 in U87-MG and T98G cells attenuated proliferation and invasion ability significantly, while upregulation of has_ circ_0075323 enhanced proliferation and migration of U251-MG and A172 cells. Mechanistically, depletion of hsa_circ_0075323 in GBM cells resulted in impaired autophagy, as indicated by increased expression of p62 and decreased expression of LC3B.</p><p><strong>Conclusions: </strong>Hsa_circ_0075323 regulates p62-mediated autophagy pathway to promote GBM progression and may serve as a prognostic biomarker potentially.</p>\",\"PeriodicalId\":49263,\"journal\":{\"name\":\"Cell Division\",\"volume\":\"18 1\",\"pages\":\"1\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843830/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Division\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13008-023-00084-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Division","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13008-023-00084-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Circular RNA hsa_circ_0075323 promotes glioblastoma cells proliferation and invasion via regulation of autophagy.
Background: Protein p62 (sequestosome 1) encoded by gene SQSTM1 plays a vital role in mediating protectively selective autophagy in tumor cells under stressed conditions. CircSQSTM1 (hsa_circ_0075323) is a circular transcript generated from gene SQSTM1 (chr5:179260586-179260782) by back-splicing. However, the potential role of hsa_hsa_circ_0075323 in glioblastoma (GBM) remains unclear. Here, we aimed to explore the biological function of hsa_circ_0075323 in GBM and its relationship with autophagy regulation.
Results: Hsa_circ_0075323 is highly expressed in GBM cells and mainly locates in the cytoplasm. Inhibition of hsa_circ_0075323 in U87-MG and T98G cells attenuated proliferation and invasion ability significantly, while upregulation of has_ circ_0075323 enhanced proliferation and migration of U251-MG and A172 cells. Mechanistically, depletion of hsa_circ_0075323 in GBM cells resulted in impaired autophagy, as indicated by increased expression of p62 and decreased expression of LC3B.
Conclusions: Hsa_circ_0075323 regulates p62-mediated autophagy pathway to promote GBM progression and may serve as a prognostic biomarker potentially.
期刊介绍:
Cell Division is an open access, peer-reviewed journal that encompasses all the molecular aspects of cell cycle control and cancer, cell growth, proliferation, survival, differentiation, signalling, gene transcription, protein synthesis, genome integrity, chromosome stability, centrosome duplication, DNA damage and DNA repair.
Cell Division provides an online forum for the cell-cycle community that aims to publish articles on all exciting aspects of cell-cycle research and to bridge the gap between models of cell cycle regulation, development, and cancer biology. This forum is driven by specialized and timely research articles, reviews and commentaries focused on this fast moving field, providing an invaluable tool for cell-cycle biologists.
Cell Division publishes articles in areas which includes, but not limited to:
DNA replication, cell fate decisions, cell cycle & development
Cell proliferation, mitosis, spindle assembly checkpoint, ubiquitin mediated degradation
DNA damage & repair
Apoptosis & cell death