COVID-19:气溶胶传播的案例。

IF 3.6 3区 生物学 Q1 BIOLOGY Interface Focus Pub Date : 2022-02-11 eCollection Date: 2022-04-06 DOI:10.1098/rsfs.2021.0072
Raymond Tellier
{"title":"COVID-19:气溶胶传播的案例。","authors":"Raymond Tellier","doi":"10.1098/rsfs.2021.0072","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic is the most severe pandemic caused by a respiratory virus since the 1918 influenza pandemic. As is the case with other respiratory viruses, three modes of transmission have been invoked: contact (direct and through fomites), large droplets and aerosols. This narrative review makes the case that aerosol transmission is an important mode for COVID-19, through reviewing studies about bioaerosol physiology, detection of infectious SARS-CoV-2 in exhaled bioaerosols, prolonged SARS-CoV-2 infectivity persistence in aerosols created in the laboratory, detection of SARS-CoV-2 in air samples, investigation of outbreaks with manifest involvement of aerosols, and animal model experiments. SARS-CoV-2 joins influenza A virus as a virus with proven pandemic capacity that can be spread by the aerosol route. This has profound implications for the control of the current pandemic and for future pandemic preparedness.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"12 2","pages":"20210072"},"PeriodicalIF":3.6000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831082/pdf/","citationCount":"40","resultStr":"{\"title\":\"COVID-19: the case for aerosol transmission.\",\"authors\":\"Raymond Tellier\",\"doi\":\"10.1098/rsfs.2021.0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic is the most severe pandemic caused by a respiratory virus since the 1918 influenza pandemic. As is the case with other respiratory viruses, three modes of transmission have been invoked: contact (direct and through fomites), large droplets and aerosols. This narrative review makes the case that aerosol transmission is an important mode for COVID-19, through reviewing studies about bioaerosol physiology, detection of infectious SARS-CoV-2 in exhaled bioaerosols, prolonged SARS-CoV-2 infectivity persistence in aerosols created in the laboratory, detection of SARS-CoV-2 in air samples, investigation of outbreaks with manifest involvement of aerosols, and animal model experiments. SARS-CoV-2 joins influenza A virus as a virus with proven pandemic capacity that can be spread by the aerosol route. This has profound implications for the control of the current pandemic and for future pandemic preparedness.</p>\",\"PeriodicalId\":13795,\"journal\":{\"name\":\"Interface Focus\",\"volume\":\"12 2\",\"pages\":\"20210072\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831082/pdf/\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interface Focus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsfs.2021.0072\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/4/6 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2021.0072","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/6 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 40

摘要

新冠肺炎大流行是自1918年流感大流行以来由呼吸道病毒引起的最严重的大流行。与其他呼吸道病毒一样,有三种传播模式:接触(直接和通过飞沫)、大飞沫和气溶胶。这篇叙述性综述通过回顾关于生物气溶胶生理学的研究、呼出生物气溶胶中传染性SARS-CoV-2的检测、实验室产生的气溶胶中延长的SARS-CoV-2传染性持久性、,气溶胶明显参与的疫情调查和动物模型实验。严重急性呼吸系统综合征冠状病毒2型与甲型流感病毒一样,是一种已被证明具有大流行能力的病毒,可以通过气溶胶途径传播。这对控制当前的大流行病和未来的大流行病准备工作具有深远影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19: the case for aerosol transmission.

The COVID-19 pandemic is the most severe pandemic caused by a respiratory virus since the 1918 influenza pandemic. As is the case with other respiratory viruses, three modes of transmission have been invoked: contact (direct and through fomites), large droplets and aerosols. This narrative review makes the case that aerosol transmission is an important mode for COVID-19, through reviewing studies about bioaerosol physiology, detection of infectious SARS-CoV-2 in exhaled bioaerosols, prolonged SARS-CoV-2 infectivity persistence in aerosols created in the laboratory, detection of SARS-CoV-2 in air samples, investigation of outbreaks with manifest involvement of aerosols, and animal model experiments. SARS-CoV-2 joins influenza A virus as a virus with proven pandemic capacity that can be spread by the aerosol route. This has profound implications for the control of the current pandemic and for future pandemic preparedness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
期刊最新文献
Fundamental constraints to the logic of living systems. The legacy and evolvability of Pere Alberch's ideas. The logic of monsters: development and morphological diversity in stem-cell-based embryo models. Capacity building in porous materials research for sustainable energy applications. Chem4Energy: a consortium of the Royal Society Africa Capacity-Building Initiative.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1