Annie M Westerlund, Bente Barge, Lewis Mervin, Samuel Genheden
{"title":"用于识别多步骤逆转录合成中的超参数的数据驱动方法。","authors":"Annie M Westerlund, Bente Barge, Lewis Mervin, Samuel Genheden","doi":"10.1002/minf.202300128","DOIUrl":null,"url":null,"abstract":"<p><p>The multi-step retrosynthesis problem can be solved by a search algorithm, such as Monte Carlo tree search (MCTS). The performance of multistep retrosynthesis, as measured by a trade-off in search time and route solvability, therefore depends on the hyperparameters of the search algorithm. In this paper, we demonstrated the effect of three MCTS hyperparameters (number of iterations, tree depth, and tree width) on metrics such as Linear integrated speed-accuracy score (LISAS) and Inverse efficiency score which consider both route solvability and search time. This exploration was conducted by employing three data-driven approaches, namely a systematic grid search, Bayesian optimization over an ensemble of molecules to obtain static MCTS hyperparameters, and a machine learning approach to dynamically predict optimal MCTS hyperparameters given an input target molecule. With the obtained results on the internal dataset, we demonstrated that it is possible to identify a hyperparameter set which outperforms the current AiZynthFinder default setting. It appeared optimal across a variety of target input molecules, both on proprietary and public datasets. The settings identified with the in-house dataset reached a solvability of 93 % and median search time of 151 s for the in-house dataset, and a 74 % solvability and 114 s for the ChEMBL dataset. These numbers can be compared to the current default settings which solved 85 % and 73 % during a median time of 110s and 84 s, for in-house and ChEMBL, respectively.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300128"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven approaches for identifying hyperparameters in multi-step retrosynthesis.\",\"authors\":\"Annie M Westerlund, Bente Barge, Lewis Mervin, Samuel Genheden\",\"doi\":\"10.1002/minf.202300128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The multi-step retrosynthesis problem can be solved by a search algorithm, such as Monte Carlo tree search (MCTS). The performance of multistep retrosynthesis, as measured by a trade-off in search time and route solvability, therefore depends on the hyperparameters of the search algorithm. In this paper, we demonstrated the effect of three MCTS hyperparameters (number of iterations, tree depth, and tree width) on metrics such as Linear integrated speed-accuracy score (LISAS) and Inverse efficiency score which consider both route solvability and search time. This exploration was conducted by employing three data-driven approaches, namely a systematic grid search, Bayesian optimization over an ensemble of molecules to obtain static MCTS hyperparameters, and a machine learning approach to dynamically predict optimal MCTS hyperparameters given an input target molecule. With the obtained results on the internal dataset, we demonstrated that it is possible to identify a hyperparameter set which outperforms the current AiZynthFinder default setting. It appeared optimal across a variety of target input molecules, both on proprietary and public datasets. The settings identified with the in-house dataset reached a solvability of 93 % and median search time of 151 s for the in-house dataset, and a 74 % solvability and 114 s for the ChEMBL dataset. These numbers can be compared to the current default settings which solved 85 % and 73 % during a median time of 110s and 84 s, for in-house and ChEMBL, respectively.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\" \",\"pages\":\"e202300128\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202300128\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300128","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Data-driven approaches for identifying hyperparameters in multi-step retrosynthesis.
The multi-step retrosynthesis problem can be solved by a search algorithm, such as Monte Carlo tree search (MCTS). The performance of multistep retrosynthesis, as measured by a trade-off in search time and route solvability, therefore depends on the hyperparameters of the search algorithm. In this paper, we demonstrated the effect of three MCTS hyperparameters (number of iterations, tree depth, and tree width) on metrics such as Linear integrated speed-accuracy score (LISAS) and Inverse efficiency score which consider both route solvability and search time. This exploration was conducted by employing three data-driven approaches, namely a systematic grid search, Bayesian optimization over an ensemble of molecules to obtain static MCTS hyperparameters, and a machine learning approach to dynamically predict optimal MCTS hyperparameters given an input target molecule. With the obtained results on the internal dataset, we demonstrated that it is possible to identify a hyperparameter set which outperforms the current AiZynthFinder default setting. It appeared optimal across a variety of target input molecules, both on proprietary and public datasets. The settings identified with the in-house dataset reached a solvability of 93 % and median search time of 151 s for the in-house dataset, and a 74 % solvability and 114 s for the ChEMBL dataset. These numbers can be compared to the current default settings which solved 85 % and 73 % during a median time of 110s and 84 s, for in-house and ChEMBL, respectively.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.