Frederick George Mayall , Mark David Goodhead , Louis de Mendonça , Sarah Eleanor Brownlie , Azka Anees , Stephen Perring
{"title":"基于人工智能的大肠活检分诊可以改善工作流程","authors":"Frederick George Mayall , Mark David Goodhead , Louis de Mendonça , Sarah Eleanor Brownlie , Azka Anees , Stephen Perring","doi":"10.1016/j.jpi.2022.100181","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Large bowel biopsies are one of the commonest types of biopsy specimen. We describe a service evaluation study to test the feasibility of using artificial intelligence (AI) to triage large bowel biopsies from a reporting backlog and prioritize those that require more urgent reporting.</p></div><div><h3>Methods</h3><p>The pathway was developed in the UK by National Health Service (NHS) laboratory staff working in a medium-sized general hospital. The AI platform was interfaced with the slide scanner software and the reporting platform’s software, so that pathologists could correct the AI label and reinforce the training set as they reported the cases.</p></div><div><h3>Results</h3><p>The AI classifier achieved a sensitivity of 97.56% and specificity of 93.02% for the case-level-diagnosis of neoplasia (adenoma and adenocarcinoma) and for an AI diagnosis of any significant pathology (i.e., adenomas, adenocarcinomas, inflammation, hyperplastic polyps, and sessile serrated lesions) sensitivity was 95.65% and specificity 92.96%. The automated AI diagnostic classification pathway took approximately 175 s per slide to download and process the scanned whole slide image (WSI) and return an AI diagnostic classification. Biopsies with an AI diagnosis of neoplasia or inflammation were prioritized for reporting while the remainder followed the routine reporting pathway. The AI triaged pathway resulted in a significantly shorter reporting turnaround time for pathologist verified neoplastic cases (P < 0.001) and inflammation (P < 0.05). The project’s costs amounted to £14800, excluding laboratory staff salaries. More time and resources were spent on developing the interface between the AI platform and laboratory IT systems than on the development of the AI platform itself.</p></div><div><h3>Conclusions</h3><p>NHS laboratory staff were able to implement an AI solution to accurately triage large bowel biopsies into several diagnostic classes and this improved reporting turnaround times for cases with neoplasia or with inflammation.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"14 ","pages":"Article 100181"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852686/pdf/","citationCount":"1","resultStr":"{\"title\":\"Artificial intelligence-based triage of large bowel biopsies can improve workflow\",\"authors\":\"Frederick George Mayall , Mark David Goodhead , Louis de Mendonça , Sarah Eleanor Brownlie , Azka Anees , Stephen Perring\",\"doi\":\"10.1016/j.jpi.2022.100181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Large bowel biopsies are one of the commonest types of biopsy specimen. We describe a service evaluation study to test the feasibility of using artificial intelligence (AI) to triage large bowel biopsies from a reporting backlog and prioritize those that require more urgent reporting.</p></div><div><h3>Methods</h3><p>The pathway was developed in the UK by National Health Service (NHS) laboratory staff working in a medium-sized general hospital. The AI platform was interfaced with the slide scanner software and the reporting platform’s software, so that pathologists could correct the AI label and reinforce the training set as they reported the cases.</p></div><div><h3>Results</h3><p>The AI classifier achieved a sensitivity of 97.56% and specificity of 93.02% for the case-level-diagnosis of neoplasia (adenoma and adenocarcinoma) and for an AI diagnosis of any significant pathology (i.e., adenomas, adenocarcinomas, inflammation, hyperplastic polyps, and sessile serrated lesions) sensitivity was 95.65% and specificity 92.96%. The automated AI diagnostic classification pathway took approximately 175 s per slide to download and process the scanned whole slide image (WSI) and return an AI diagnostic classification. Biopsies with an AI diagnosis of neoplasia or inflammation were prioritized for reporting while the remainder followed the routine reporting pathway. The AI triaged pathway resulted in a significantly shorter reporting turnaround time for pathologist verified neoplastic cases (P < 0.001) and inflammation (P < 0.05). The project’s costs amounted to £14800, excluding laboratory staff salaries. More time and resources were spent on developing the interface between the AI platform and laboratory IT systems than on the development of the AI platform itself.</p></div><div><h3>Conclusions</h3><p>NHS laboratory staff were able to implement an AI solution to accurately triage large bowel biopsies into several diagnostic classes and this improved reporting turnaround times for cases with neoplasia or with inflammation.</p></div>\",\"PeriodicalId\":37769,\"journal\":{\"name\":\"Journal of Pathology Informatics\",\"volume\":\"14 \",\"pages\":\"Article 100181\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852686/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pathology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2153353922007817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353922007817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Artificial intelligence-based triage of large bowel biopsies can improve workflow
Background
Large bowel biopsies are one of the commonest types of biopsy specimen. We describe a service evaluation study to test the feasibility of using artificial intelligence (AI) to triage large bowel biopsies from a reporting backlog and prioritize those that require more urgent reporting.
Methods
The pathway was developed in the UK by National Health Service (NHS) laboratory staff working in a medium-sized general hospital. The AI platform was interfaced with the slide scanner software and the reporting platform’s software, so that pathologists could correct the AI label and reinforce the training set as they reported the cases.
Results
The AI classifier achieved a sensitivity of 97.56% and specificity of 93.02% for the case-level-diagnosis of neoplasia (adenoma and adenocarcinoma) and for an AI diagnosis of any significant pathology (i.e., adenomas, adenocarcinomas, inflammation, hyperplastic polyps, and sessile serrated lesions) sensitivity was 95.65% and specificity 92.96%. The automated AI diagnostic classification pathway took approximately 175 s per slide to download and process the scanned whole slide image (WSI) and return an AI diagnostic classification. Biopsies with an AI diagnosis of neoplasia or inflammation were prioritized for reporting while the remainder followed the routine reporting pathway. The AI triaged pathway resulted in a significantly shorter reporting turnaround time for pathologist verified neoplastic cases (P < 0.001) and inflammation (P < 0.05). The project’s costs amounted to £14800, excluding laboratory staff salaries. More time and resources were spent on developing the interface between the AI platform and laboratory IT systems than on the development of the AI platform itself.
Conclusions
NHS laboratory staff were able to implement an AI solution to accurately triage large bowel biopsies into several diagnostic classes and this improved reporting turnaround times for cases with neoplasia or with inflammation.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.