Nicholas Ravanelli, Douglas Newhouse, Fergus Foster, Aaron R Caldwell
{"title":"通风胶囊与KuduSmart®设备之间的协议,用于测量被动热应激和运动时的出汗反应。","authors":"Nicholas Ravanelli, Douglas Newhouse, Fergus Foster, Aaron R Caldwell","doi":"10.1139/apnm-2023-0149","DOIUrl":null,"url":null,"abstract":"<p><p>The present study assessed agreement between a wireless sweat rate monitor (KuduSmart® device) and the ventilated capsule (VC) technique for measuring: (i) minute-averaged local sweat rate (LSR), (ii) sweating onset, (iii) sudomotor thermosensitivity, and (iv) steady-state LSR, during passive heat stress and exercise. It was hypothesized that acceptable agreement with no bias would be observed between techniques for all assessed sweating characteristics. On two separate occasions for each intervention, participants were either passively heated by recirculating hot water (49 °C) through a tube-lined garment until rectal temperature increased 1 °C over baseline (<i>n</i> = 8), or a 60 min treadmill march at a fixed rate of heat production (∼500 W, <i>n</i> = 9). LSR of the forearm was concurrently measured with a VC and the KuduSmart® device secured within ∼2 cm. Using a ratio scale Bland-Altman analysis with the VC as the reference, the KuduSmart® device demonstrated systematic bias and not acceptable agreement for minute-averaged LSR (1.17 [1.09, 1.27], CV = 44.5%), systematic bias and acceptable agreement for steady-state LSR (1.16 [1.09,1.23], CV = 19.5%), no bias and acceptable agreement for thermosensitivity (1.07 [0.99, 1.16], CV = 23.2%), and no bias and good agreement for sweating onset (1.00 [1.00, 1.00], CV = 11.1%). In total, ≥73% of all minute-averaged LSR observations with the KuduSmart<b>®</b> device (<i>n</i> = 2743) were within an absolute error of <0.2 mg/cm<sup>2</sup>/min to the VC, the reference minimum detectable change in measurement error of a VC on the forearm. Collectively, the KuduSmart<b>®</b> device may be a satisfactory solution for assessing the sweating response to heat stress where a VC is impractical.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agreement between the ventilated capsule and the KuduSmart® device for measuring sweating responses to passive heat stress and exercise.\",\"authors\":\"Nicholas Ravanelli, Douglas Newhouse, Fergus Foster, Aaron R Caldwell\",\"doi\":\"10.1139/apnm-2023-0149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study assessed agreement between a wireless sweat rate monitor (KuduSmart® device) and the ventilated capsule (VC) technique for measuring: (i) minute-averaged local sweat rate (LSR), (ii) sweating onset, (iii) sudomotor thermosensitivity, and (iv) steady-state LSR, during passive heat stress and exercise. It was hypothesized that acceptable agreement with no bias would be observed between techniques for all assessed sweating characteristics. On two separate occasions for each intervention, participants were either passively heated by recirculating hot water (49 °C) through a tube-lined garment until rectal temperature increased 1 °C over baseline (<i>n</i> = 8), or a 60 min treadmill march at a fixed rate of heat production (∼500 W, <i>n</i> = 9). LSR of the forearm was concurrently measured with a VC and the KuduSmart® device secured within ∼2 cm. Using a ratio scale Bland-Altman analysis with the VC as the reference, the KuduSmart® device demonstrated systematic bias and not acceptable agreement for minute-averaged LSR (1.17 [1.09, 1.27], CV = 44.5%), systematic bias and acceptable agreement for steady-state LSR (1.16 [1.09,1.23], CV = 19.5%), no bias and acceptable agreement for thermosensitivity (1.07 [0.99, 1.16], CV = 23.2%), and no bias and good agreement for sweating onset (1.00 [1.00, 1.00], CV = 11.1%). In total, ≥73% of all minute-averaged LSR observations with the KuduSmart<b>®</b> device (<i>n</i> = 2743) were within an absolute error of <0.2 mg/cm<sup>2</sup>/min to the VC, the reference minimum detectable change in measurement error of a VC on the forearm. Collectively, the KuduSmart<b>®</b> device may be a satisfactory solution for assessing the sweating response to heat stress where a VC is impractical.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1139/apnm-2023-0149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1139/apnm-2023-0149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Agreement between the ventilated capsule and the KuduSmart® device for measuring sweating responses to passive heat stress and exercise.
The present study assessed agreement between a wireless sweat rate monitor (KuduSmart® device) and the ventilated capsule (VC) technique for measuring: (i) minute-averaged local sweat rate (LSR), (ii) sweating onset, (iii) sudomotor thermosensitivity, and (iv) steady-state LSR, during passive heat stress and exercise. It was hypothesized that acceptable agreement with no bias would be observed between techniques for all assessed sweating characteristics. On two separate occasions for each intervention, participants were either passively heated by recirculating hot water (49 °C) through a tube-lined garment until rectal temperature increased 1 °C over baseline (n = 8), or a 60 min treadmill march at a fixed rate of heat production (∼500 W, n = 9). LSR of the forearm was concurrently measured with a VC and the KuduSmart® device secured within ∼2 cm. Using a ratio scale Bland-Altman analysis with the VC as the reference, the KuduSmart® device demonstrated systematic bias and not acceptable agreement for minute-averaged LSR (1.17 [1.09, 1.27], CV = 44.5%), systematic bias and acceptable agreement for steady-state LSR (1.16 [1.09,1.23], CV = 19.5%), no bias and acceptable agreement for thermosensitivity (1.07 [0.99, 1.16], CV = 23.2%), and no bias and good agreement for sweating onset (1.00 [1.00, 1.00], CV = 11.1%). In total, ≥73% of all minute-averaged LSR observations with the KuduSmart® device (n = 2743) were within an absolute error of <0.2 mg/cm2/min to the VC, the reference minimum detectable change in measurement error of a VC on the forearm. Collectively, the KuduSmart® device may be a satisfactory solution for assessing the sweating response to heat stress where a VC is impractical.