{"title":"使用剂量-面积乘积评估机器人放射外科手术的计划质量。","authors":"","doi":"10.1016/j.zemedi.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>In robotic stereotactic radiosurgery (SRS), optimal selection of collimators from a set of fixed cones must be determined manually by trial and error. A unique and uniformly scaled metric to characterize plan quality could help identify Pareto-efficient treatment plans.</p></div><div><h3>Methods</h3><p>The concept of dose-area product (DAP) was used to define a measure (DAP<sub>ratio</sub>) of the targeting efficiency of a set of beams by relating the integral DAP of the beams to the mean dose achieved in the target volume. In a retrospective study of five clinical cases of brain metastases with representative target volumes (range: 0.5–5.68 ml) and 121 treatment plans with all possible collimator choices, the DAP<sub>ratio</sub> was determined along with other plan metrics (conformity index CI, gradient index R50%, treatment time, total number of monitor units TotalMU, radiotoxicity index f12, and energy efficiency index η50%), and the respective Spearman's rank correlation coefficients were calculated. The ability of DAP<sub>ratio</sub> to determine Pareto efficiency for collimator selection at DAP<sub>ratio</sub> < 1 and DAP<sub>ratio</sub> < 0.9 was tested using scatter plots.</p></div><div><h3>Results</h3><p>The DAP<sub>ratio</sub> for all plans was on average 0.95 ± 0.13 (range: 0.61–1.31). Only the variance of the DAP<sub>ratio</sub> was strongly dependent on the number of collimators. For each target, there was a strong or very strong correlation of DAP<sub>ratio</sub> with all other metrics of plan quality. Only for R50% and η50% was there a moderate correlation with DAP<sub>ratio</sub> for the plans of all targets combined, as R50% and η50% strongly depended on target size. Optimal treatment plans with CI, R50%, f12, and η50% close to 1 were clearly associated with DAP<sub>ratio</sub> < 1, and plans with DAP<sub>ratio</sub> < 0.9 were even superior, but at the cost of longer treatment times and higher total monitor units.</p></div><div><h3>Conclusions</h3><p>The newly defined DAP<sub>ratio</sub> has been demonstrated to be a metric that characterizes the target efficiency of a set of beams in robotic SRS in one single and uniformly scaled number. A DAP<sub>ratio</sub> < 1 indicates Pareto efficiency. The trade-off between plan quality on the one hand and short treatment time or low total monitor units on the other hand is also represented by DAP<sub>ratio</sub>.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 3","pages":"Pages 428-435"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923000016/pdfft?md5=11d050dcb968a77bf2766b4dbaca3618&pid=1-s2.0-S0939388923000016-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Use of dose-area product to assess plan quality in robotic radiosurgery\",\"authors\":\"\",\"doi\":\"10.1016/j.zemedi.2023.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>In robotic stereotactic radiosurgery (SRS), optimal selection of collimators from a set of fixed cones must be determined manually by trial and error. A unique and uniformly scaled metric to characterize plan quality could help identify Pareto-efficient treatment plans.</p></div><div><h3>Methods</h3><p>The concept of dose-area product (DAP) was used to define a measure (DAP<sub>ratio</sub>) of the targeting efficiency of a set of beams by relating the integral DAP of the beams to the mean dose achieved in the target volume. In a retrospective study of five clinical cases of brain metastases with representative target volumes (range: 0.5–5.68 ml) and 121 treatment plans with all possible collimator choices, the DAP<sub>ratio</sub> was determined along with other plan metrics (conformity index CI, gradient index R50%, treatment time, total number of monitor units TotalMU, radiotoxicity index f12, and energy efficiency index η50%), and the respective Spearman's rank correlation coefficients were calculated. The ability of DAP<sub>ratio</sub> to determine Pareto efficiency for collimator selection at DAP<sub>ratio</sub> < 1 and DAP<sub>ratio</sub> < 0.9 was tested using scatter plots.</p></div><div><h3>Results</h3><p>The DAP<sub>ratio</sub> for all plans was on average 0.95 ± 0.13 (range: 0.61–1.31). Only the variance of the DAP<sub>ratio</sub> was strongly dependent on the number of collimators. For each target, there was a strong or very strong correlation of DAP<sub>ratio</sub> with all other metrics of plan quality. Only for R50% and η50% was there a moderate correlation with DAP<sub>ratio</sub> for the plans of all targets combined, as R50% and η50% strongly depended on target size. Optimal treatment plans with CI, R50%, f12, and η50% close to 1 were clearly associated with DAP<sub>ratio</sub> < 1, and plans with DAP<sub>ratio</sub> < 0.9 were even superior, but at the cost of longer treatment times and higher total monitor units.</p></div><div><h3>Conclusions</h3><p>The newly defined DAP<sub>ratio</sub> has been demonstrated to be a metric that characterizes the target efficiency of a set of beams in robotic SRS in one single and uniformly scaled number. A DAP<sub>ratio</sub> < 1 indicates Pareto efficiency. The trade-off between plan quality on the one hand and short treatment time or low total monitor units on the other hand is also represented by DAP<sub>ratio</sub>.</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\"34 3\",\"pages\":\"Pages 428-435\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939388923000016/pdfft?md5=11d050dcb968a77bf2766b4dbaca3618&pid=1-s2.0-S0939388923000016-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388923000016\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923000016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Use of dose-area product to assess plan quality in robotic radiosurgery
Purpose
In robotic stereotactic radiosurgery (SRS), optimal selection of collimators from a set of fixed cones must be determined manually by trial and error. A unique and uniformly scaled metric to characterize plan quality could help identify Pareto-efficient treatment plans.
Methods
The concept of dose-area product (DAP) was used to define a measure (DAPratio) of the targeting efficiency of a set of beams by relating the integral DAP of the beams to the mean dose achieved in the target volume. In a retrospective study of five clinical cases of brain metastases with representative target volumes (range: 0.5–5.68 ml) and 121 treatment plans with all possible collimator choices, the DAPratio was determined along with other plan metrics (conformity index CI, gradient index R50%, treatment time, total number of monitor units TotalMU, radiotoxicity index f12, and energy efficiency index η50%), and the respective Spearman's rank correlation coefficients were calculated. The ability of DAPratio to determine Pareto efficiency for collimator selection at DAPratio < 1 and DAPratio < 0.9 was tested using scatter plots.
Results
The DAPratio for all plans was on average 0.95 ± 0.13 (range: 0.61–1.31). Only the variance of the DAPratio was strongly dependent on the number of collimators. For each target, there was a strong or very strong correlation of DAPratio with all other metrics of plan quality. Only for R50% and η50% was there a moderate correlation with DAPratio for the plans of all targets combined, as R50% and η50% strongly depended on target size. Optimal treatment plans with CI, R50%, f12, and η50% close to 1 were clearly associated with DAPratio < 1, and plans with DAPratio < 0.9 were even superior, but at the cost of longer treatment times and higher total monitor units.
Conclusions
The newly defined DAPratio has been demonstrated to be a metric that characterizes the target efficiency of a set of beams in robotic SRS in one single and uniformly scaled number. A DAPratio < 1 indicates Pareto efficiency. The trade-off between plan quality on the one hand and short treatment time or low total monitor units on the other hand is also represented by DAPratio.
期刊介绍:
Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing.
Focuses of the articles are:
-Biophysical methods in radiation therapy and nuclear medicine
-Dosimetry and radiation protection
-Radiological diagnostics and quality assurance
-Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography
-Ultrasonography diagnostics, application of laser and UV rays
-Electronic processing of biosignals
-Artificial intelligence and machine learning in medical physics
In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.