{"title":"环状核苷酸信号在噬菌体防御和反防御中的作用。","authors":"Januka S Athukoralage, Malcolm F White","doi":"10.1146/annurev-virology-100120-010228","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in our understanding of prokaryotic antiphage defense mechanisms in the past few years have revealed a multitude of new cyclic nucleotide signaling molecules that play a crucial role in switching infected cells into an antiviral state. Defense pathways including type III CRISPR (clustered regularly interspaced palindromic repeats), CBASS (cyclic nucleotide-based antiphage signaling system), PYCSAR (pyrimidine cyclase system for antiphage resistance), and Thoeris all use cyclic nucleotides as second messengers to activate a diverse range of effector proteins. These effectors typically degrade or disrupt key cellular components such as nucleic acids, membranes, or metabolites, slowing down viral replication kinetics at great cost to the infected cell. Mechanisms to manipulate the levels of cyclic nucleotides are employed by cells to regulate defense pathways and by viruses to subvert them. Here we review the discovery and mechanism of the key pathways, signaling molecules and effectors, parallels and differences between the systems, open questions, and prospects for future research in this area.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"9 1","pages":"451-468"},"PeriodicalIF":8.1000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Cyclic Nucleotide Signaling in Phage Defense and Counter-Defense.\",\"authors\":\"Januka S Athukoralage, Malcolm F White\",\"doi\":\"10.1146/annurev-virology-100120-010228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in our understanding of prokaryotic antiphage defense mechanisms in the past few years have revealed a multitude of new cyclic nucleotide signaling molecules that play a crucial role in switching infected cells into an antiviral state. Defense pathways including type III CRISPR (clustered regularly interspaced palindromic repeats), CBASS (cyclic nucleotide-based antiphage signaling system), PYCSAR (pyrimidine cyclase system for antiphage resistance), and Thoeris all use cyclic nucleotides as second messengers to activate a diverse range of effector proteins. These effectors typically degrade or disrupt key cellular components such as nucleic acids, membranes, or metabolites, slowing down viral replication kinetics at great cost to the infected cell. Mechanisms to manipulate the levels of cyclic nucleotides are employed by cells to regulate defense pathways and by viruses to subvert them. Here we review the discovery and mechanism of the key pathways, signaling molecules and effectors, parallels and differences between the systems, open questions, and prospects for future research in this area.</p>\",\"PeriodicalId\":48761,\"journal\":{\"name\":\"Annual Review of Virology\",\"volume\":\"9 1\",\"pages\":\"451-468\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-virology-100120-010228\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-virology-100120-010228","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
Cyclic Nucleotide Signaling in Phage Defense and Counter-Defense.
Advances in our understanding of prokaryotic antiphage defense mechanisms in the past few years have revealed a multitude of new cyclic nucleotide signaling molecules that play a crucial role in switching infected cells into an antiviral state. Defense pathways including type III CRISPR (clustered regularly interspaced palindromic repeats), CBASS (cyclic nucleotide-based antiphage signaling system), PYCSAR (pyrimidine cyclase system for antiphage resistance), and Thoeris all use cyclic nucleotides as second messengers to activate a diverse range of effector proteins. These effectors typically degrade or disrupt key cellular components such as nucleic acids, membranes, or metabolites, slowing down viral replication kinetics at great cost to the infected cell. Mechanisms to manipulate the levels of cyclic nucleotides are employed by cells to regulate defense pathways and by viruses to subvert them. Here we review the discovery and mechanism of the key pathways, signaling molecules and effectors, parallels and differences between the systems, open questions, and prospects for future research in this area.
期刊介绍:
The Annual Review of Virology serves as a conduit for disseminating thrilling advancements in our comprehension of viruses spanning animals, plants, bacteria, archaea, fungi, and protozoa. Its reviews illuminate novel concepts and trajectories in basic virology, elucidating viral disease mechanisms, exploring virus-host interactions, and scrutinizing cellular and immune responses to virus infection. These reviews underscore the exceptional capacity of viruses as potent probes for investigating cellular function.