{"title":"佛罗里达州医院服务区的gis自动划定:从达特茅斯方法到网络社区检测方法。","authors":"Changzhen Wang, Fahui Wang","doi":"10.1080/19475683.2022.2026470","DOIUrl":null,"url":null,"abstract":"<p><p>Since the Dartmouth hospital service areas (HSAs) were proposed three decades ago, there has been a large body of work using the unit in examining the geographic variation in health care in the U.S. for evaluating health care system performance and informing health policy. However, many studies question the replicability and reliability of the Dartmouth HSAs in meeting the challenges of ever-changing and a diverse set of health care services. This research develops a reproducible, automated, and efficient GIS tool to implement Dartmouth method for defining HSAs. Moreover, the research adapts two popular network community detection methods to account for spatial constraints for defining HSAs that are scale flexible and optimize an important property such as maximum service flows within HSAs. A case study based on the state inpatient database in Florida from the Healthcare Cost and Utilization Project is used to evaluate the efficiency and effectiveness of the methods. The study represents a major step toward developing HSA delineation methods that are computationally efficient, adaptable for various scales (from a local region to as large as a national market), and automated without a steep learning curve for public health professionals.</p>","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"28 2","pages":"93-109"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355116/pdf/nihms-1771230.pdf","citationCount":"7","resultStr":"{\"title\":\"GIS-Automated Delineation of Hospital Service Areas in Florida: From Dartmouth Method to Network Community Detection Methods.\",\"authors\":\"Changzhen Wang, Fahui Wang\",\"doi\":\"10.1080/19475683.2022.2026470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since the Dartmouth hospital service areas (HSAs) were proposed three decades ago, there has been a large body of work using the unit in examining the geographic variation in health care in the U.S. for evaluating health care system performance and informing health policy. However, many studies question the replicability and reliability of the Dartmouth HSAs in meeting the challenges of ever-changing and a diverse set of health care services. This research develops a reproducible, automated, and efficient GIS tool to implement Dartmouth method for defining HSAs. Moreover, the research adapts two popular network community detection methods to account for spatial constraints for defining HSAs that are scale flexible and optimize an important property such as maximum service flows within HSAs. A case study based on the state inpatient database in Florida from the Healthcare Cost and Utilization Project is used to evaluate the efficiency and effectiveness of the methods. The study represents a major step toward developing HSA delineation methods that are computationally efficient, adaptable for various scales (from a local region to as large as a national market), and automated without a steep learning curve for public health professionals.</p>\",\"PeriodicalId\":46270,\"journal\":{\"name\":\"Annals of GIS\",\"volume\":\"28 2\",\"pages\":\"93-109\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355116/pdf/nihms-1771230.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of GIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475683.2022.2026470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2022.2026470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
GIS-Automated Delineation of Hospital Service Areas in Florida: From Dartmouth Method to Network Community Detection Methods.
Since the Dartmouth hospital service areas (HSAs) were proposed three decades ago, there has been a large body of work using the unit in examining the geographic variation in health care in the U.S. for evaluating health care system performance and informing health policy. However, many studies question the replicability and reliability of the Dartmouth HSAs in meeting the challenges of ever-changing and a diverse set of health care services. This research develops a reproducible, automated, and efficient GIS tool to implement Dartmouth method for defining HSAs. Moreover, the research adapts two popular network community detection methods to account for spatial constraints for defining HSAs that are scale flexible and optimize an important property such as maximum service flows within HSAs. A case study based on the state inpatient database in Florida from the Healthcare Cost and Utilization Project is used to evaluate the efficiency and effectiveness of the methods. The study represents a major step toward developing HSA delineation methods that are computationally efficient, adaptable for various scales (from a local region to as large as a national market), and automated without a steep learning curve for public health professionals.