AliNA-一个用于RNA二级结构预测的深度学习程序。

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2023-12-01 Epub Date: 2023-11-02 DOI:10.1002/minf.202300113
Shamsudin S Nasaev, Artem R Mukanov, Ivan I Kuznetsov, Alexander V Veselovsky
{"title":"AliNA-一个用于RNA二级结构预测的深度学习程序。","authors":"Shamsudin S Nasaev, Artem R Mukanov, Ivan I Kuznetsov, Alexander V Veselovsky","doi":"10.1002/minf.202300113","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays there are numerous discovered natural RNA variations participating in different cellular processes and artificial RNA, e. g., aptamers, riboswitches. One of the required tasks in the investigation of their functions and mechanism of influence on cells and interaction with targets is the prediction of RNA secondary structures. The classic thermodynamic-based prediction algorithms do not consider the specificity of biological folding and deep learning methods that were designed to resolve this issue suffer from homology-based methods problems. Herein, we present a method for RNA secondary structure prediction based on deep learning - AliNA (ALIgned Nucleic Acids). Our method successfully predicts secondary structures for non-homologous to train-data RNA families thanks to usage of the data augmentation techniques. Augmentation extends existing datasets with easily-accessible simulated data. The proposed method shows a high quality of prediction across different benchmarks including pseudoknots. The method is available on GitHub for free (https://github.com/Arty40m/AliNA).</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300113"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AliNA - a deep learning program for RNA secondary structure prediction.\",\"authors\":\"Shamsudin S Nasaev, Artem R Mukanov, Ivan I Kuznetsov, Alexander V Veselovsky\",\"doi\":\"10.1002/minf.202300113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nowadays there are numerous discovered natural RNA variations participating in different cellular processes and artificial RNA, e. g., aptamers, riboswitches. One of the required tasks in the investigation of their functions and mechanism of influence on cells and interaction with targets is the prediction of RNA secondary structures. The classic thermodynamic-based prediction algorithms do not consider the specificity of biological folding and deep learning methods that were designed to resolve this issue suffer from homology-based methods problems. Herein, we present a method for RNA secondary structure prediction based on deep learning - AliNA (ALIgned Nucleic Acids). Our method successfully predicts secondary structures for non-homologous to train-data RNA families thanks to usage of the data augmentation techniques. Augmentation extends existing datasets with easily-accessible simulated data. The proposed method shows a high quality of prediction across different benchmarks including pseudoknots. The method is available on GitHub for free (https://github.com/Arty40m/AliNA).</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\" \",\"pages\":\"e202300113\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202300113\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300113","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

目前已经发现了许多参与不同细胞过程的天然RNA变体和人工RNA。 g.适体、核糖开关。在研究它们的功能和对细胞的影响机制以及与靶标的相互作用时,所需的任务之一是预测RNA二级结构。经典的基于热力学的预测算法没有考虑生物折叠的特异性,为解决这一问题而设计的深度学习方法存在基于同源性的方法问题。在此,我们提出了一种基于深度学习的RNA二级结构预测方法——AliNA(ALIgned Nucleic Acids)。由于使用了数据扩增技术,我们的方法成功地预测了非同源的二级结构以训练数据RNA家族。增强功能利用易于访问的模拟数据扩展了现有数据集。所提出的方法在包括伪节点在内的不同基准上显示出高质量的预测。该方法在GitHub上免费提供(https://github.com/Arty40m/AliNA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AliNA - a deep learning program for RNA secondary structure prediction.

Nowadays there are numerous discovered natural RNA variations participating in different cellular processes and artificial RNA, e. g., aptamers, riboswitches. One of the required tasks in the investigation of their functions and mechanism of influence on cells and interaction with targets is the prediction of RNA secondary structures. The classic thermodynamic-based prediction algorithms do not consider the specificity of biological folding and deep learning methods that were designed to resolve this issue suffer from homology-based methods problems. Herein, we present a method for RNA secondary structure prediction based on deep learning - AliNA (ALIgned Nucleic Acids). Our method successfully predicts secondary structures for non-homologous to train-data RNA families thanks to usage of the data augmentation techniques. Augmentation extends existing datasets with easily-accessible simulated data. The proposed method shows a high quality of prediction across different benchmarks including pseudoknots. The method is available on GitHub for free (https://github.com/Arty40m/AliNA).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Extended Activity Cliffs-Driven Approaches on Data Splitting for the Study of Bioactivity Machine Learning Predictions. BIOMX-DB: A web application for the BIOFACQUIM natural product database. Chemoinformatics for corrosion science: Data-driven modeling of corrosion inhibition by organic molecules. My 50 Years with Chemoinformatics. Pathway-based prediction of the therapeutic effects and mode of action of custom-made multiherbal medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1