认知神经科学中的因果推理。

IF 3.2 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Wiley Interdisciplinary Reviews-Cognitive Science Pub Date : 2023-09-01 Epub Date: 2023-04-09 DOI:10.1002/wcs.1650
David Danks, Isaac Davis
{"title":"认知神经科学中的因果推理。","authors":"David Danks,&nbsp;Isaac Davis","doi":"10.1002/wcs.1650","DOIUrl":null,"url":null,"abstract":"<p><p>Causal inference is a key step in many research endeavors in cognitive science and neuroscience, and particularly cognitive neuroscience. Statistical knowledge is sufficient for prediction and diagnosis, but causal knowledge is required for action and intervention. Most statistics courses and textbooks emphasize the difficulty of causal inference, focusing on the maxim that \"correlation does not mean causation\": there can be multiple causal possibilities, often many of them, consistent with given observed statistics. This paper focuses instead on the conceptual issues and assumptions that confront causal and other kinds of inference, primarily focusing on cognitive neuroscience. We connect inference methods with goals and challenges, and provide concrete guidance about how to select appropriate tools for the scientific task. This article is categorized under: Psychology > Theory and Methods Philosophy > Foundations of Cognitive Science.</p>","PeriodicalId":47720,"journal":{"name":"Wiley Interdisciplinary Reviews-Cognitive Science","volume":"14 5","pages":"e1650"},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Causal inference in cognitive neuroscience.\",\"authors\":\"David Danks,&nbsp;Isaac Davis\",\"doi\":\"10.1002/wcs.1650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Causal inference is a key step in many research endeavors in cognitive science and neuroscience, and particularly cognitive neuroscience. Statistical knowledge is sufficient for prediction and diagnosis, but causal knowledge is required for action and intervention. Most statistics courses and textbooks emphasize the difficulty of causal inference, focusing on the maxim that \\\"correlation does not mean causation\\\": there can be multiple causal possibilities, often many of them, consistent with given observed statistics. This paper focuses instead on the conceptual issues and assumptions that confront causal and other kinds of inference, primarily focusing on cognitive neuroscience. We connect inference methods with goals and challenges, and provide concrete guidance about how to select appropriate tools for the scientific task. This article is categorized under: Psychology > Theory and Methods Philosophy > Foundations of Cognitive Science.</p>\",\"PeriodicalId\":47720,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Cognitive Science\",\"volume\":\"14 5\",\"pages\":\"e1650\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Cognitive Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1002/wcs.1650\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Cognitive Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1002/wcs.1650","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2

摘要

因果推理是认知科学和神经科学,特别是认知神经科学中许多研究工作的关键一步。统计知识足以进行预测和诊断,但行动和干预需要因果知识。大多数统计学课程和教科书都强调因果推断的难度,重点是“相关性并不意味着因果关系”这句格言:可以有多种因果可能性,通常是其中的许多,与给定的观察到的统计数据一致。本文转而关注因果推理和其他推理所面临的概念问题和假设,主要关注认知神经科学。我们将推理方法与目标和挑战联系起来,并就如何为科学任务选择合适的工具提供具体指导。本文分类如下:心理学>理论与方法哲学>认知科学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Causal inference in cognitive neuroscience.

Causal inference is a key step in many research endeavors in cognitive science and neuroscience, and particularly cognitive neuroscience. Statistical knowledge is sufficient for prediction and diagnosis, but causal knowledge is required for action and intervention. Most statistics courses and textbooks emphasize the difficulty of causal inference, focusing on the maxim that "correlation does not mean causation": there can be multiple causal possibilities, often many of them, consistent with given observed statistics. This paper focuses instead on the conceptual issues and assumptions that confront causal and other kinds of inference, primarily focusing on cognitive neuroscience. We connect inference methods with goals and challenges, and provide concrete guidance about how to select appropriate tools for the scientific task. This article is categorized under: Psychology > Theory and Methods Philosophy > Foundations of Cognitive Science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
7.70%
发文量
50
期刊最新文献
The Multiple Dimensions of Familiarity: From Representations to Phenomenology. Compositionality in perception: A framework. An update of the development of motor behavior. Consciousness Under the Spotlight: The Problem of Measuring Subjective Experience. Catching Mind Wandering With Pupillometry: Conceptual and Methodological Challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1