Xiaogang Cheng, Fei Hu, Bin Yang, Faming Wang, Thomas Olofsson
{"title":"需求控制睡眠热舒适的非接触式睡眠姿势测量:一项试点研究","authors":"Xiaogang Cheng, Fei Hu, Bin Yang, Faming Wang, Thomas Olofsson","doi":"10.1111/ina.13175","DOIUrl":null,"url":null,"abstract":"<p>Thermal comfort during sleep is essential for both sleep quality and human health while sleeping. There are currently few effective contactless methods for detecting the sleep thermal comfort at any time of day or night. In this paper, a vision-based detection approach for human thermal comfort while sleeping was proposed, which is intended to avoid overcooling/overheating supply, meet the thermal comfort needs of human sleep, and improve human sleep quality and health. Based on 438 valid questionnaire surveys, 10 types of thermal comfort sleep postures were summarized. By using a large number of data captured, a fundamental framework of detection algorithm was constructed to detect human sleeping postures, and corresponding weighting model was established. A total of 2.65 million frames of posture data in natural sleep status were collected, and thermal comfort-related sleep postures dataset was created. Finally, the robustness and effectiveness of the proposed algorithm were validated. The validation results show that the sleeping posture and human skeleton keypoints can be used for estimating sleeping thermal comfort, and the the quilt coverage area can be fused to improve the detection accuracy.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"32 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Contactless sleep posture measurements for demand-controlled sleep thermal comfort: A pilot study\",\"authors\":\"Xiaogang Cheng, Fei Hu, Bin Yang, Faming Wang, Thomas Olofsson\",\"doi\":\"10.1111/ina.13175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermal comfort during sleep is essential for both sleep quality and human health while sleeping. There are currently few effective contactless methods for detecting the sleep thermal comfort at any time of day or night. In this paper, a vision-based detection approach for human thermal comfort while sleeping was proposed, which is intended to avoid overcooling/overheating supply, meet the thermal comfort needs of human sleep, and improve human sleep quality and health. Based on 438 valid questionnaire surveys, 10 types of thermal comfort sleep postures were summarized. By using a large number of data captured, a fundamental framework of detection algorithm was constructed to detect human sleeping postures, and corresponding weighting model was established. A total of 2.65 million frames of posture data in natural sleep status were collected, and thermal comfort-related sleep postures dataset was created. Finally, the robustness and effectiveness of the proposed algorithm were validated. The validation results show that the sleeping posture and human skeleton keypoints can be used for estimating sleeping thermal comfort, and the the quilt coverage area can be fused to improve the detection accuracy.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":\"32 12\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ina.13175\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ina.13175","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Contactless sleep posture measurements for demand-controlled sleep thermal comfort: A pilot study
Thermal comfort during sleep is essential for both sleep quality and human health while sleeping. There are currently few effective contactless methods for detecting the sleep thermal comfort at any time of day or night. In this paper, a vision-based detection approach for human thermal comfort while sleeping was proposed, which is intended to avoid overcooling/overheating supply, meet the thermal comfort needs of human sleep, and improve human sleep quality and health. Based on 438 valid questionnaire surveys, 10 types of thermal comfort sleep postures were summarized. By using a large number of data captured, a fundamental framework of detection algorithm was constructed to detect human sleeping postures, and corresponding weighting model was established. A total of 2.65 million frames of posture data in natural sleep status were collected, and thermal comfort-related sleep postures dataset was created. Finally, the robustness and effectiveness of the proposed algorithm were validated. The validation results show that the sleeping posture and human skeleton keypoints can be used for estimating sleeping thermal comfort, and the the quilt coverage area can be fused to improve the detection accuracy.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.