Ziyi Liu, Ruijie Wang, Wenjing Liu, Yushan Liu, Xiaoli Feng, Fujian Zhao, Pei Chen, Longquan Shao and Mingdeng Rong
{"title":"氮化硅成骨性能的应用及生物学机制研究进展:综述。","authors":"Ziyi Liu, Ruijie Wang, Wenjing Liu, Yushan Liu, Xiaoli Feng, Fujian Zhao, Pei Chen, Longquan Shao and Mingdeng Rong","doi":"10.1039/D3BM00877K","DOIUrl":null,"url":null,"abstract":"<p >Silicon nitride, an emerging bioceramic material, is highly sought after in the biomedical industry due to its osteogenesis-promoting properties, which are a result of its unique surface chemistry and excellent mechanical properties. Currently, it is used in clinics as an orthopedic implant material. The osteogenesis-promoting properties of silicon nitride are manifested in its contribution to the formation of a local osteogenic microenvironment, wherein silicon nitride and its hydrolysis products influence osteogenesis by modulating the biological behaviors of the constituents of the osteogenic microenvironment. In particular, silicon nitride regulates redox signaling, cellular autophagy, glycolysis, and bone mineralization in cells involved in bone formation <em>via</em> several mechanisms. Moreover, it may also promote osteogenesis by influencing immune regulation and angiogenesis. In addition, the wettability, surface morphology, and charge of silicon nitride play crucial roles in regulating its osteogenesis-promoting properties. However, as a bioceramic material, the molding process of silicon nitride needs to be optimized, and its osteogenic mechanism must be further investigated. Herein, we summarize the impact of the molding process of silicon nitride on its osteogenic properties and clinical applications. In addition, the mechanisms of silicon nitride in promoting osteogenesis are discussed, followed by a summary of the current gaps in silicon nitride mechanism research. This review, therefore, aims to provide novel ideas for the future development and applications of silicon nitride.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 21","pages":" 7003-7017"},"PeriodicalIF":5.8000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in the application and biological mechanism of silicon nitride osteogenic properties: a review\",\"authors\":\"Ziyi Liu, Ruijie Wang, Wenjing Liu, Yushan Liu, Xiaoli Feng, Fujian Zhao, Pei Chen, Longquan Shao and Mingdeng Rong\",\"doi\":\"10.1039/D3BM00877K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Silicon nitride, an emerging bioceramic material, is highly sought after in the biomedical industry due to its osteogenesis-promoting properties, which are a result of its unique surface chemistry and excellent mechanical properties. Currently, it is used in clinics as an orthopedic implant material. The osteogenesis-promoting properties of silicon nitride are manifested in its contribution to the formation of a local osteogenic microenvironment, wherein silicon nitride and its hydrolysis products influence osteogenesis by modulating the biological behaviors of the constituents of the osteogenic microenvironment. In particular, silicon nitride regulates redox signaling, cellular autophagy, glycolysis, and bone mineralization in cells involved in bone formation <em>via</em> several mechanisms. Moreover, it may also promote osteogenesis by influencing immune regulation and angiogenesis. In addition, the wettability, surface morphology, and charge of silicon nitride play crucial roles in regulating its osteogenesis-promoting properties. However, as a bioceramic material, the molding process of silicon nitride needs to be optimized, and its osteogenic mechanism must be further investigated. Herein, we summarize the impact of the molding process of silicon nitride on its osteogenic properties and clinical applications. In addition, the mechanisms of silicon nitride in promoting osteogenesis are discussed, followed by a summary of the current gaps in silicon nitride mechanism research. This review, therefore, aims to provide novel ideas for the future development and applications of silicon nitride.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 21\",\"pages\":\" 7003-7017\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/bm/d3bm00877k\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/bm/d3bm00877k","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Recent advances in the application and biological mechanism of silicon nitride osteogenic properties: a review
Silicon nitride, an emerging bioceramic material, is highly sought after in the biomedical industry due to its osteogenesis-promoting properties, which are a result of its unique surface chemistry and excellent mechanical properties. Currently, it is used in clinics as an orthopedic implant material. The osteogenesis-promoting properties of silicon nitride are manifested in its contribution to the formation of a local osteogenic microenvironment, wherein silicon nitride and its hydrolysis products influence osteogenesis by modulating the biological behaviors of the constituents of the osteogenic microenvironment. In particular, silicon nitride regulates redox signaling, cellular autophagy, glycolysis, and bone mineralization in cells involved in bone formation via several mechanisms. Moreover, it may also promote osteogenesis by influencing immune regulation and angiogenesis. In addition, the wettability, surface morphology, and charge of silicon nitride play crucial roles in regulating its osteogenesis-promoting properties. However, as a bioceramic material, the molding process of silicon nitride needs to be optimized, and its osteogenic mechanism must be further investigated. Herein, we summarize the impact of the molding process of silicon nitride on its osteogenic properties and clinical applications. In addition, the mechanisms of silicon nitride in promoting osteogenesis are discussed, followed by a summary of the current gaps in silicon nitride mechanism research. This review, therefore, aims to provide novel ideas for the future development and applications of silicon nitride.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.