Vania Silverio, Patricia A G Canane, Tomas A Martins, Ruben Afonso, Susana Cardoso, Elsa Batista
{"title":"芯片微流控电渗透泵的研制。","authors":"Vania Silverio, Patricia A G Canane, Tomas A Martins, Ruben Afonso, Susana Cardoso, Elsa Batista","doi":"10.1515/bmt-2022-0051","DOIUrl":null,"url":null,"abstract":"<p><p>Infusion therapy is the most common form of therapy used in health care. However, the existing infusion devices show higher flow discrepancies as flow rates decrease to a few nL min<sup>-1</sup>. As a result, dosing errors can contribute to the morbidity and mortality of patients. In the scope of project 18HLT08 MeDD II - Metrology for drug delivery, this investigation aims at the development of a silicon microchip flow pump capable of steadily and continuously dispense very low flow rates of a few nL min<sup>-1</sup>. The fabrication methodologies explored here use a combination of typical cleanroom micro/nanofabrication techniques and off-the-shelf equipment. Preliminary tests show flow rates as low as 45 nL min<sup>-1</sup> can be obtained in this microfluidic electroosmotic pump. The experimental flow rates are in good agreement with results predicted by multiphysics simulation, with less than 8% deviation ratio. This cost effective electroosmotic micropump has the potential to act as a steady and continuous drug delivery system to neonatal patients as well as to organs on chip (OoC), determining the stability of the shear stress imposed on the cells or the right cell culture medium conditions.</p>","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":"68 1","pages":"79-90"},"PeriodicalIF":1.3000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of a microfluidic electroosmosis pump on a chip for steady and continuous fluid delivery.\",\"authors\":\"Vania Silverio, Patricia A G Canane, Tomas A Martins, Ruben Afonso, Susana Cardoso, Elsa Batista\",\"doi\":\"10.1515/bmt-2022-0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infusion therapy is the most common form of therapy used in health care. However, the existing infusion devices show higher flow discrepancies as flow rates decrease to a few nL min<sup>-1</sup>. As a result, dosing errors can contribute to the morbidity and mortality of patients. In the scope of project 18HLT08 MeDD II - Metrology for drug delivery, this investigation aims at the development of a silicon microchip flow pump capable of steadily and continuously dispense very low flow rates of a few nL min<sup>-1</sup>. The fabrication methodologies explored here use a combination of typical cleanroom micro/nanofabrication techniques and off-the-shelf equipment. Preliminary tests show flow rates as low as 45 nL min<sup>-1</sup> can be obtained in this microfluidic electroosmotic pump. The experimental flow rates are in good agreement with results predicted by multiphysics simulation, with less than 8% deviation ratio. This cost effective electroosmotic micropump has the potential to act as a steady and continuous drug delivery system to neonatal patients as well as to organs on chip (OoC), determining the stability of the shear stress imposed on the cells or the right cell culture medium conditions.</p>\",\"PeriodicalId\":8900,\"journal\":{\"name\":\"Biomedical Engineering / Biomedizinische Technik\",\"volume\":\"68 1\",\"pages\":\"79-90\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering / Biomedizinische Technik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2022-0051\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2022-0051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
摘要
输液疗法是医疗保健中最常用的治疗形式。然而,现有的输液装置显示出更大的流量差异,流速降低到几nL min-1。因此,剂量错误可能导致患者的发病率和死亡率。在项目18HLT08 MeDD II -药物输送计量的范围内,本研究旨在开发一种硅芯片流量泵,能够稳定连续地分配几nL min-1的极低流速。这里探讨的制造方法结合了典型的洁净室微/纳米制造技术和现成的设备。初步试验表明,该微流控电渗透泵的流速可低至45 nL / min。实验流速与多物理场模拟结果吻合较好,误差小于8%。这种具有成本效益的电渗透微泵有潜力作为新生儿患者和芯片上器官(OoC)的稳定和连续的药物输送系统,确定施加在细胞上的剪切应力的稳定性或正确的细胞培养基条件。
Development of a microfluidic electroosmosis pump on a chip for steady and continuous fluid delivery.
Infusion therapy is the most common form of therapy used in health care. However, the existing infusion devices show higher flow discrepancies as flow rates decrease to a few nL min-1. As a result, dosing errors can contribute to the morbidity and mortality of patients. In the scope of project 18HLT08 MeDD II - Metrology for drug delivery, this investigation aims at the development of a silicon microchip flow pump capable of steadily and continuously dispense very low flow rates of a few nL min-1. The fabrication methodologies explored here use a combination of typical cleanroom micro/nanofabrication techniques and off-the-shelf equipment. Preliminary tests show flow rates as low as 45 nL min-1 can be obtained in this microfluidic electroosmotic pump. The experimental flow rates are in good agreement with results predicted by multiphysics simulation, with less than 8% deviation ratio. This cost effective electroosmotic micropump has the potential to act as a steady and continuous drug delivery system to neonatal patients as well as to organs on chip (OoC), determining the stability of the shear stress imposed on the cells or the right cell culture medium conditions.
期刊介绍:
Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.