无尾两栖动物皮质骨形态的多样性

IF 1.7 4区 生物学 Q4 CELL BIOLOGY Development Growth & Differentiation Pub Date : 2022-12-14 DOI:10.1111/dgd.12831
Yoshiaki Kondo, Rina Iwamoto, Takumi Takahashi, Kaito Suganuma, Hideaki Kato, Hiroaki Nakamura, Akira Yukita
{"title":"无尾两栖动物皮质骨形态的多样性","authors":"Yoshiaki Kondo,&nbsp;Rina Iwamoto,&nbsp;Takumi Takahashi,&nbsp;Kaito Suganuma,&nbsp;Hideaki Kato,&nbsp;Hiroaki Nakamura,&nbsp;Akira Yukita","doi":"10.1111/dgd.12831","DOIUrl":null,"url":null,"abstract":"<p>The cortical bones of mammals, birds, and reptiles are composed of a complex of woven bone and lamellar bone (fibrolamellar bone) organized into a variety of different patterns; however, it remains unclear whether amphibians possess similar structures. Importantly, to understand the evolutionary process of limb bones in tetrapods, it is necessary to compare the bone structure of amphibians (aquatic to terrestrial) with that of amniotes (mostly terrestrial). Therefore, this study compared the cortical bones in the long bones of several frog species before and after metamorphosis. Using micro-computed tomography (CT), we found that the cortical bones in the fibrolamellar bone of <i>Xenopus tropicalis</i> (Pipoidea superfamily) and <i>Lithobates catesbeianus</i> (Ranoidea superfamily) froglets are dense, whereas those of <i>Ceratophrys cranwelli</i> (Hyloidea superfamily) are porous. To clarify whether these features are common to their superfamily or sister group, four other frog species were examined. Histochemical analyses revealed porous cortical bones in <i>C. ornata</i> and <i>Lepidobatrachus laevis</i> (belonging to the same family, Ceratophryidae, as <i>C. cranwelli</i>). However, the cortical bones of <i>Dryophytes japonicus</i> (Hylidae, a sister group of Ceratophryidae in the Hyloidea superfamily), <i>Microhyla okinavensis</i> (Microhylidae, independent of the Hyloidea superfamily), and <i>Pleurodeles waltl</i>, a newt as an outgroup of anurans, are dense with no observed cavities. Our findings demonstrate that at least three members of the Ceratophryidae family have porous cortical bones similar to those of reptiles, birds, and mammals, suggesting that the process of fibrolamellar bone formation arose evolutionarily in amphibians and is conserved in the common ancestor of amniotes.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 1","pages":"16-22"},"PeriodicalIF":1.7000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diversity of cortical bone morphology in anuran amphibians\",\"authors\":\"Yoshiaki Kondo,&nbsp;Rina Iwamoto,&nbsp;Takumi Takahashi,&nbsp;Kaito Suganuma,&nbsp;Hideaki Kato,&nbsp;Hiroaki Nakamura,&nbsp;Akira Yukita\",\"doi\":\"10.1111/dgd.12831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cortical bones of mammals, birds, and reptiles are composed of a complex of woven bone and lamellar bone (fibrolamellar bone) organized into a variety of different patterns; however, it remains unclear whether amphibians possess similar structures. Importantly, to understand the evolutionary process of limb bones in tetrapods, it is necessary to compare the bone structure of amphibians (aquatic to terrestrial) with that of amniotes (mostly terrestrial). Therefore, this study compared the cortical bones in the long bones of several frog species before and after metamorphosis. Using micro-computed tomography (CT), we found that the cortical bones in the fibrolamellar bone of <i>Xenopus tropicalis</i> (Pipoidea superfamily) and <i>Lithobates catesbeianus</i> (Ranoidea superfamily) froglets are dense, whereas those of <i>Ceratophrys cranwelli</i> (Hyloidea superfamily) are porous. To clarify whether these features are common to their superfamily or sister group, four other frog species were examined. Histochemical analyses revealed porous cortical bones in <i>C. ornata</i> and <i>Lepidobatrachus laevis</i> (belonging to the same family, Ceratophryidae, as <i>C. cranwelli</i>). However, the cortical bones of <i>Dryophytes japonicus</i> (Hylidae, a sister group of Ceratophryidae in the Hyloidea superfamily), <i>Microhyla okinavensis</i> (Microhylidae, independent of the Hyloidea superfamily), and <i>Pleurodeles waltl</i>, a newt as an outgroup of anurans, are dense with no observed cavities. Our findings demonstrate that at least three members of the Ceratophryidae family have porous cortical bones similar to those of reptiles, birds, and mammals, suggesting that the process of fibrolamellar bone formation arose evolutionarily in amphibians and is conserved in the common ancestor of amniotes.</p>\",\"PeriodicalId\":50589,\"journal\":{\"name\":\"Development Growth & Differentiation\",\"volume\":\"65 1\",\"pages\":\"16-22\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Growth & Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12831\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12831","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

哺乳动物、鸟类和爬行动物的皮质骨是由编织骨和板层骨(纤维板层骨)的复合体组成的,这些骨被组织成各种不同的图案;然而,目前尚不清楚两栖动物是否具有类似的结构。重要的是,为了了解四足动物肢体骨骼的进化过程,有必要将两栖动物(水生和陆生)与羊膜动物(主要是陆生)的骨骼结构进行比较。因此,本研究比较了几种蛙类在变形前后长骨中的皮质骨。利用显微计算机断层扫描(CT),我们发现热带爪蟾(Pipoidea超科)和斑蛙(Ranoidea超科)小蛙纤维层状骨的皮质骨是致密的,而cranwelli角鼻蛙(Hyloidea超科)的皮质骨是多孔的。为了弄清这些特征是否在它们的超级家族或姐妹群体中是共同的,研究人员对另外四种青蛙进行了研究。组织化学分析显示,C. ornata和Lepidobatrachus laevis(与C. cranwelli同属角鼻虫科)具有多孔的皮质骨。然而,日本水生植物(水生植物科,水生植物超科中角螈科的姐妹群)、微水生植物(微水生植物科,独立于水生植物超科)和蝾螈(无尾目外群)的皮质骨致密,没有观察到空腔。我们的研究结果表明,至少有三种角鼻虫科的成员具有与爬行动物、鸟类和哺乳动物相似的多孔皮质骨,这表明纤维板层骨形成的过程是在两栖动物中进化产生的,并且在羊膜动物的共同祖先中被保存下来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diversity of cortical bone morphology in anuran amphibians

The cortical bones of mammals, birds, and reptiles are composed of a complex of woven bone and lamellar bone (fibrolamellar bone) organized into a variety of different patterns; however, it remains unclear whether amphibians possess similar structures. Importantly, to understand the evolutionary process of limb bones in tetrapods, it is necessary to compare the bone structure of amphibians (aquatic to terrestrial) with that of amniotes (mostly terrestrial). Therefore, this study compared the cortical bones in the long bones of several frog species before and after metamorphosis. Using micro-computed tomography (CT), we found that the cortical bones in the fibrolamellar bone of Xenopus tropicalis (Pipoidea superfamily) and Lithobates catesbeianus (Ranoidea superfamily) froglets are dense, whereas those of Ceratophrys cranwelli (Hyloidea superfamily) are porous. To clarify whether these features are common to their superfamily or sister group, four other frog species were examined. Histochemical analyses revealed porous cortical bones in C. ornata and Lepidobatrachus laevis (belonging to the same family, Ceratophryidae, as C. cranwelli). However, the cortical bones of Dryophytes japonicus (Hylidae, a sister group of Ceratophryidae in the Hyloidea superfamily), Microhyla okinavensis (Microhylidae, independent of the Hyloidea superfamily), and Pleurodeles waltl, a newt as an outgroup of anurans, are dense with no observed cavities. Our findings demonstrate that at least three members of the Ceratophryidae family have porous cortical bones similar to those of reptiles, birds, and mammals, suggesting that the process of fibrolamellar bone formation arose evolutionarily in amphibians and is conserved in the common ancestor of amniotes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development Growth & Differentiation
Development Growth & Differentiation 生物-发育生物学
CiteScore
4.60
自引率
4.00%
发文量
62
审稿时长
6 months
期刊介绍: Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers. Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources. Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above. Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.
期刊最新文献
Quantitative in toto live imaging analysis of apical nuclear migration in the mouse telencephalic neuroepithelium. Labeling and sorting of avian primordial germ cells utilizing Lycopersicon Esculentum lectin. Transition from fetal to postnatal state in the heart: Crosstalk between metabolism and regeneration. Issue Information Mitochondrial DNA replication is essential for neurogenesis but not gliogenesis in fetal neural stem cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1