Collab还是Cancel?炎症小体信号的细菌影响因素。

IF 8.5 1区 生物学 Q1 MICROBIOLOGY Annual review of microbiology Pub Date : 2023-09-15 DOI:10.1146/annurev-micro-032521-024017
Beatrice I Herrmann, James P Grayczyk, Igor E Brodsky
{"title":"Collab还是Cancel?炎症小体信号的细菌影响因素。","authors":"Beatrice I Herrmann,&nbsp;James P Grayczyk,&nbsp;Igor E Brodsky","doi":"10.1146/annurev-micro-032521-024017","DOIUrl":null,"url":null,"abstract":"<p><p>The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"77 ","pages":"451-477"},"PeriodicalIF":8.5000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Collab or Cancel? Bacterial Influencers of Inflammasome Signaling.\",\"authors\":\"Beatrice I Herrmann,&nbsp;James P Grayczyk,&nbsp;Igor E Brodsky\",\"doi\":\"10.1146/annurev-micro-032521-024017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.</p>\",\"PeriodicalId\":7946,\"journal\":{\"name\":\"Annual review of microbiology\",\"volume\":\"77 \",\"pages\":\"451-477\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-micro-032521-024017\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-micro-032521-024017","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

多细胞生物的免疫系统保护它们免受有害微生物的侵害。为了在宿主免疫反应面前建立感染,病原体必须进化出针对免疫防御机制的特定策略。一种这样的防御是细胞内蛋白质复合物的形成,称为炎症小体,由微生物成分的检测和细菌感染期间发生的稳态过程的破坏触发。活性炎症小体的形成通过激活炎症半胱天冬酶和切割靶蛋白启动程序性细胞死亡途径。炎症小体激活的细胞死亡途径,如pyroptosis,会导致保护宿主的促炎反应。细菌感染能够通过两种不同的方式影响炎症小体:激活和干扰。在这篇综述中,我们讨论了细菌活动如何影响炎症小体,并讨论了炎症小体激活或逃避对宿主和病原体的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collab or Cancel? Bacterial Influencers of Inflammasome Signaling.

The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of microbiology
Annual review of microbiology 生物-微生物学
CiteScore
18.10
自引率
0.00%
发文量
37
期刊介绍: Annual Review of Microbiology is a Medical and Microbiology Journal and published by Annual Reviews Inc. The Annual Review of Microbiology, in publication since 1947, covers significant developments in the field of microbiology, encompassing bacteria, archaea, viruses, and unicellular eukaryotes. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The Impact Factor of Annual Review of Microbiology is 10.242 (2024) Impact factor. The Annual Review of Microbiology Journal is Indexed with Pubmed, Scopus, UGC (University Grants Commission).
期刊最新文献
Understanding the Diversity, Evolution, Ecology, and Applications of Mycoviruses. Mechanisms Underlying Ophiocordyceps Infection and Behavioral Manipulation of Ants: Unique or Ubiquitous? Cyclic Diguanylate in the Wild: Roles During Plant and Animal Colonization How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry Dimethylsulfoniopropionate (DMSP): From Biochemistry to Global Ecological Significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1