Ingrid Tonning Olsson, Johan Lundgren, Lars Hjorth, Per Munck Af Rosenschöld, Åsa Hammar, Sean Perrin
{"title":"小儿脑肿瘤后的神经认知发展--一项纵向回顾性队列研究。","authors":"Ingrid Tonning Olsson, Johan Lundgren, Lars Hjorth, Per Munck Af Rosenschöld, Åsa Hammar, Sean Perrin","doi":"10.1080/09297049.2023.2172149","DOIUrl":null,"url":null,"abstract":"<p><p>Survivors of Pediatric Brain Tumors (PBTs) treated with cranial radiation therapy (CRT) often experience a decline in neurocognitive test scores. Less is known about the neurocognitive development of non-irradiated survivors of PBTs. The aim of this study was to statistically model neurocognitive development after PBT in both irradiated and non-irradiated survivors and to find clinical variables associated with the rate of decline in neurocognitive scores. A total of 151 survivors were included in the study. Inclusion criteria: Diagnosis of PBT between 2001 and 2013 or earlier diagnosis of PBT and turning 18 years of age between 2006 and 2013. Exclusion criteria: Death within a year from diagnosis, neurocutaneous syndromes, severe intellectual disability. Clinical neurocognitive data were collected retrospectively from medical records. Multilevel linear modeling was used to evaluate the rate of decline in neurocognitive measures and factors associated with the same. A decline was found in most measures for both irradiated and non-irradiated survivors. Ventriculo-peritoneal (VP) shunting and treatment with whole-brain radiation therapy (WBRT) were associated with a faster decline in neurocognitive scores. Male sex and supratentorial lateral tumor were associated with lower scores. Verbal learning measures were either stable or improving. Survivors of PBTs show a pattern of decline in neurocognitive scores irrespective of treatment received, which suggests the need for routine screening for neurocognitive rehabilitation. However, survivors treated with WBRT and/or a VP shunt declined at a faster rate and appear to be at the highest risk of negative neurocognitive outcomes and to have the greatest need for neurocognitive rehabilitation.</p>","PeriodicalId":9789,"journal":{"name":"Child Neuropsychology","volume":" ","pages":"22-44"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurocognitive development after pediatric brain tumor - a longitudinal, retrospective cohort study.\",\"authors\":\"Ingrid Tonning Olsson, Johan Lundgren, Lars Hjorth, Per Munck Af Rosenschöld, Åsa Hammar, Sean Perrin\",\"doi\":\"10.1080/09297049.2023.2172149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Survivors of Pediatric Brain Tumors (PBTs) treated with cranial radiation therapy (CRT) often experience a decline in neurocognitive test scores. Less is known about the neurocognitive development of non-irradiated survivors of PBTs. The aim of this study was to statistically model neurocognitive development after PBT in both irradiated and non-irradiated survivors and to find clinical variables associated with the rate of decline in neurocognitive scores. A total of 151 survivors were included in the study. Inclusion criteria: Diagnosis of PBT between 2001 and 2013 or earlier diagnosis of PBT and turning 18 years of age between 2006 and 2013. Exclusion criteria: Death within a year from diagnosis, neurocutaneous syndromes, severe intellectual disability. Clinical neurocognitive data were collected retrospectively from medical records. Multilevel linear modeling was used to evaluate the rate of decline in neurocognitive measures and factors associated with the same. A decline was found in most measures for both irradiated and non-irradiated survivors. Ventriculo-peritoneal (VP) shunting and treatment with whole-brain radiation therapy (WBRT) were associated with a faster decline in neurocognitive scores. Male sex and supratentorial lateral tumor were associated with lower scores. Verbal learning measures were either stable or improving. Survivors of PBTs show a pattern of decline in neurocognitive scores irrespective of treatment received, which suggests the need for routine screening for neurocognitive rehabilitation. However, survivors treated with WBRT and/or a VP shunt declined at a faster rate and appear to be at the highest risk of negative neurocognitive outcomes and to have the greatest need for neurocognitive rehabilitation.</p>\",\"PeriodicalId\":9789,\"journal\":{\"name\":\"Child Neuropsychology\",\"volume\":\" \",\"pages\":\"22-44\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Child Neuropsychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/09297049.2023.2172149\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Child Neuropsychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/09297049.2023.2172149","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Neurocognitive development after pediatric brain tumor - a longitudinal, retrospective cohort study.
Survivors of Pediatric Brain Tumors (PBTs) treated with cranial radiation therapy (CRT) often experience a decline in neurocognitive test scores. Less is known about the neurocognitive development of non-irradiated survivors of PBTs. The aim of this study was to statistically model neurocognitive development after PBT in both irradiated and non-irradiated survivors and to find clinical variables associated with the rate of decline in neurocognitive scores. A total of 151 survivors were included in the study. Inclusion criteria: Diagnosis of PBT between 2001 and 2013 or earlier diagnosis of PBT and turning 18 years of age between 2006 and 2013. Exclusion criteria: Death within a year from diagnosis, neurocutaneous syndromes, severe intellectual disability. Clinical neurocognitive data were collected retrospectively from medical records. Multilevel linear modeling was used to evaluate the rate of decline in neurocognitive measures and factors associated with the same. A decline was found in most measures for both irradiated and non-irradiated survivors. Ventriculo-peritoneal (VP) shunting and treatment with whole-brain radiation therapy (WBRT) were associated with a faster decline in neurocognitive scores. Male sex and supratentorial lateral tumor were associated with lower scores. Verbal learning measures were either stable or improving. Survivors of PBTs show a pattern of decline in neurocognitive scores irrespective of treatment received, which suggests the need for routine screening for neurocognitive rehabilitation. However, survivors treated with WBRT and/or a VP shunt declined at a faster rate and appear to be at the highest risk of negative neurocognitive outcomes and to have the greatest need for neurocognitive rehabilitation.
期刊介绍:
The purposes of Child Neuropsychology are to:
publish research on the neuropsychological effects of disorders which affect brain functioning in children and adolescents,
publish research on the neuropsychological dimensions of development in childhood and adolescence and
promote the integration of theory, method and research findings in child/developmental neuropsychology.
The primary emphasis of Child Neuropsychology is to publish original empirical research. Theoretical and methodological papers and theoretically relevant case studies are welcome. Critical reviews of topics pertinent to child/developmental neuropsychology are encouraged.
Emphases of interest include the following: information processing mechanisms; the impact of injury or disease on neuropsychological functioning; behavioral cognitive and pharmacological approaches to treatment/intervention; psychosocial correlates of neuropsychological dysfunction; definitive normative, reliability, and validity studies of psychometric and other procedures used in the neuropsychological assessment of children and adolescents. Articles on both normal and dysfunctional development that are relevant to the aforementioned dimensions are welcome. Multiple approaches (e.g., basic, applied, clinical) and multiple methodologies (e.g., cross-sectional, longitudinal, experimental, multivariate, correlational) are appropriate. Books, media, and software reviews will be published.