采用QbD策略评估细胞活力和密度对单克隆抗体初级回收率的影响

IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Engineering in Life Sciences Pub Date : 2022-12-23 DOI:10.1002/elsc.202200056
Ole Jacob Wohlenberg, Carlotta Kortmann, Katharina V. Meyer, Thomas Scheper, Dörte Solle
{"title":"采用QbD策略评估细胞活力和密度对单克隆抗体初级回收率的影响","authors":"Ole Jacob Wohlenberg,&nbsp;Carlotta Kortmann,&nbsp;Katharina V. Meyer,&nbsp;Thomas Scheper,&nbsp;Dörte Solle","doi":"10.1002/elsc.202200056","DOIUrl":null,"url":null,"abstract":"<p>Quality by Design (QbD) is one of the most important tools for the implementation of Process Analytical Technology (PAT) in biopharmaceutical production. For optimal characterization of a monoclonal antibody (mAb) upstream process a stepwise approach was implemented. The upstream was divided into three process stages, namely inoculum expansion, production, and primary recovery, which were investigated individually. This approach enables analysis of process parameters and associated intermediate quality attributes as well as systematic knowledge transfer to subsequent process steps. Following previous research, this study focuses on the primary recovery of the mAb and thereby marks the final step toward a holistic characterization of the upstream process. Based on gained knowledge during the production process evaluation, the cell viability and density were determined as critical parameters for the primary recovery. Directed cell viability adjustment was achieved using cytotoxic camptothecin in a novel protocol. Additionally, the cell separation method was added to the Design of Experiments (DoE) as a qualitative factor and varied between filtration and centrifugation. To assess the quality attributes after cell separation, the bioactivity of the mAb was analyzed using a cell-based assay and the purity of the supernatant was evaluated by measurement of process related impurities (host cell protein proportion, residual DNA). Multivariate data analysis of the compiled data confirmed the hypothesis that the upstream process has no significant influence on the bioactivity of the mAb. Therefore, process control must be tuned towards high mAb titers and purity after the primary recovery, enabling optimal downstream processing of the product. To minimize amounts of host cell proteins and residual DNA the cell viability should be maintained above 85% and the cell density should be controlled around 15 × 10<sup>6</sup> cells/ml during the cell removal. Thereby, this study shows the importance of QbD for the characterization of the primary recovery of mAbs and highlights the useful implementation of the stepwise approach over subsequent process stages.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200056","citationCount":"0","resultStr":"{\"title\":\"Employing QbD strategies to assess the impact of cell viability and density on the primary recovery of monoclonal antibodies\",\"authors\":\"Ole Jacob Wohlenberg,&nbsp;Carlotta Kortmann,&nbsp;Katharina V. Meyer,&nbsp;Thomas Scheper,&nbsp;Dörte Solle\",\"doi\":\"10.1002/elsc.202200056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quality by Design (QbD) is one of the most important tools for the implementation of Process Analytical Technology (PAT) in biopharmaceutical production. For optimal characterization of a monoclonal antibody (mAb) upstream process a stepwise approach was implemented. The upstream was divided into three process stages, namely inoculum expansion, production, and primary recovery, which were investigated individually. This approach enables analysis of process parameters and associated intermediate quality attributes as well as systematic knowledge transfer to subsequent process steps. Following previous research, this study focuses on the primary recovery of the mAb and thereby marks the final step toward a holistic characterization of the upstream process. Based on gained knowledge during the production process evaluation, the cell viability and density were determined as critical parameters for the primary recovery. Directed cell viability adjustment was achieved using cytotoxic camptothecin in a novel protocol. Additionally, the cell separation method was added to the Design of Experiments (DoE) as a qualitative factor and varied between filtration and centrifugation. To assess the quality attributes after cell separation, the bioactivity of the mAb was analyzed using a cell-based assay and the purity of the supernatant was evaluated by measurement of process related impurities (host cell protein proportion, residual DNA). Multivariate data analysis of the compiled data confirmed the hypothesis that the upstream process has no significant influence on the bioactivity of the mAb. Therefore, process control must be tuned towards high mAb titers and purity after the primary recovery, enabling optimal downstream processing of the product. To minimize amounts of host cell proteins and residual DNA the cell viability should be maintained above 85% and the cell density should be controlled around 15 × 10<sup>6</sup> cells/ml during the cell removal. Thereby, this study shows the importance of QbD for the characterization of the primary recovery of mAbs and highlights the useful implementation of the stepwise approach over subsequent process stages.</p>\",\"PeriodicalId\":11678,\"journal\":{\"name\":\"Engineering in Life Sciences\",\"volume\":\"23 2\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Life Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202200056\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202200056","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

设计质量(QbD)是过程分析技术(PAT)在生物制药生产中实施的重要工具之一。为了优化单克隆抗体(mAb)上游过程的表征,采用了逐步方法。将上游工艺分为接种量扩大、生产和初采三个阶段,分别进行了研究。这种方法可以分析工艺参数和相关的中间质量属性,以及系统的知识转移到后续的工艺步骤。根据之前的研究,本研究的重点是单抗的初步恢复,从而标志着上游过程整体表征的最后一步。根据在生产工艺评价中获得的知识,确定了细胞活力和密度作为初级回收率的关键参数。定向细胞活力调整是实现使用细胞毒性喜树碱在一个新的协议。此外,在实验设计(DoE)中增加了细胞分离方法作为定性因素,并在过滤和离心之间变化。为了评估细胞分离后的质量属性,使用基于细胞的测定法分析单抗的生物活性,并通过测量与工艺相关的杂质(宿主细胞蛋白比例、残留DNA)来评估上清的纯度。对汇编的数据进行多变量数据分析,证实了上游工艺对单抗生物活性没有显著影响的假设。因此,在初级回收后,过程控制必须调整为高单抗滴度和纯度,以实现产品的最佳下游处理。为了尽量减少宿主细胞蛋白和残留DNA的量,细胞活力应保持在85%以上,细胞密度应控制在15 × 106个细胞/ml左右。因此,本研究显示了QbD对单克隆抗体初级回收特性的重要性,并强调了在随后的工艺阶段逐步实施方法的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Employing QbD strategies to assess the impact of cell viability and density on the primary recovery of monoclonal antibodies

Quality by Design (QbD) is one of the most important tools for the implementation of Process Analytical Technology (PAT) in biopharmaceutical production. For optimal characterization of a monoclonal antibody (mAb) upstream process a stepwise approach was implemented. The upstream was divided into three process stages, namely inoculum expansion, production, and primary recovery, which were investigated individually. This approach enables analysis of process parameters and associated intermediate quality attributes as well as systematic knowledge transfer to subsequent process steps. Following previous research, this study focuses on the primary recovery of the mAb and thereby marks the final step toward a holistic characterization of the upstream process. Based on gained knowledge during the production process evaluation, the cell viability and density were determined as critical parameters for the primary recovery. Directed cell viability adjustment was achieved using cytotoxic camptothecin in a novel protocol. Additionally, the cell separation method was added to the Design of Experiments (DoE) as a qualitative factor and varied between filtration and centrifugation. To assess the quality attributes after cell separation, the bioactivity of the mAb was analyzed using a cell-based assay and the purity of the supernatant was evaluated by measurement of process related impurities (host cell protein proportion, residual DNA). Multivariate data analysis of the compiled data confirmed the hypothesis that the upstream process has no significant influence on the bioactivity of the mAb. Therefore, process control must be tuned towards high mAb titers and purity after the primary recovery, enabling optimal downstream processing of the product. To minimize amounts of host cell proteins and residual DNA the cell viability should be maintained above 85% and the cell density should be controlled around 15 × 106 cells/ml during the cell removal. Thereby, this study shows the importance of QbD for the characterization of the primary recovery of mAbs and highlights the useful implementation of the stepwise approach over subsequent process stages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering in Life Sciences
Engineering in Life Sciences 工程技术-生物工程与应用微生物
CiteScore
6.40
自引率
3.70%
发文量
81
审稿时长
3 months
期刊介绍: Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.
期刊最新文献
Optimizations of Placenta Extracellular Matrix-Loaded Silk Fibroin/Alginate 3D-Printed Scaffolds Structurally and Functionally for Bone Tissue Engineering. A Consecutive Genome Engineering Method Reveals a New Phenotype and Regulation of Glucose and Glycerol Utilization in Clostridium Pasteurianum. Investigating Ultrafiltration Membranes and Operation Modes for Improved Lentiviral Vector Processing. Issue Information Cover Picture: Engineering in Life Sciences 12'24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1