Piezo1:纤维疾病的潜在新治疗靶点。

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Progress in Biophysics & Molecular Biology Pub Date : 2023-09-16 DOI:10.1016/j.pbiomolbio.2023.09.001
Xin Liu , Weipin Niu , Shuqing Zhao , Wenjuan Zhang , Ying Zhao , Jing Li
{"title":"Piezo1:纤维疾病的潜在新治疗靶点。","authors":"Xin Liu ,&nbsp;Weipin Niu ,&nbsp;Shuqing Zhao ,&nbsp;Wenjuan Zhang ,&nbsp;Ying Zhao ,&nbsp;Jing Li","doi":"10.1016/j.pbiomolbio.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezo1:the potential new therapeutic target for fibrotic diseases\",\"authors\":\"Xin Liu ,&nbsp;Weipin Niu ,&nbsp;Shuqing Zhao ,&nbsp;Wenjuan Zhang ,&nbsp;Ying Zhao ,&nbsp;Jing Li\",\"doi\":\"10.1016/j.pbiomolbio.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.</p></div>\",\"PeriodicalId\":54554,\"journal\":{\"name\":\"Progress in Biophysics & Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biophysics & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079610723000822\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610723000822","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纤维化是一种发生在各种器官中的病理过程,其特征是细胞外基质(ECM)过度沉积,导致结构损伤,严重时导致器官衰竭。在纤维化微环境中,机械力在塑造细胞行为和功能方面发挥着至关重要的作用,但细胞如何感知和传递这些机械信号的确切分子机制,以及纤维化进展的物理方面,仍知之甚少。Piezo1是一种机械敏感的离子通道蛋白,是一种关键的介质,将机械刺激转化为电信号或化学信号。越来越多的证据表明,Piezo1在ECM的形成和纤维化扩张的机械转导中的血液动力学中起着核心作用。这篇综述概述了目前对Piezo1在纤维化进展中的作用的理解,包括心肌纤维化、肺纤维化、肾纤维化和其他纤维化疾病。主要目标是为纤维化疾病领域的潜在临床应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piezo1:the potential new therapeutic target for fibrotic diseases

Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Biophysics & Molecular Biology
Progress in Biophysics & Molecular Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
7.90%
发文量
85
审稿时长
85 days
期刊介绍: Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.
期刊最新文献
A physical perspective on lithium therapy. Editorial Board Computational approaches for modeling and structural design of biological systems: A comprehensive review Recent progress of mechanosensitive mechanism on breast cancer Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1