Yusaku Noda, Ryohei Sugita, Atsushi Hirose, Naoki Kawachi, Keitaro Tanoi, Jun Furukawa, Ken Naito
{"title":"耐盐油菜品种Na+分配的多样性。","authors":"Yusaku Noda, Ryohei Sugita, Atsushi Hirose, Naoki Kawachi, Keitaro Tanoi, Jun Furukawa, Ken Naito","doi":"10.1270/jsbbs.22012","DOIUrl":null,"url":null,"abstract":"<p><p>Wild species in the genus <i>Vigna</i> are a great resource of tolerance to various stresses including salinity. We have previously screened the genetic resources of the genus <i>Vigna</i> and identified several accessions that have independently evolved salt tolerance. However, many aspects of such tolerance have remained unknown. Thus, we used autoradiography with radioactive sodium (<sup>22</sup>Na<sup>+</sup>) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to visualize and compare Na<sup>+</sup> allocation in <i>Vigna angularis</i> (Willd.) Ohwi & H.Ohashi (azuki bean), <i>Vigna nakashimae</i> (Ohwi) Ohwi & H.Ohashi, <i>Vigna riukiuensis</i> (Ohwi) Ohwi & H.Ohashi, <i>Vigna luteola</i> (Jacq.) Benth. and <i>Vigna marina</i> (Burm.) Merr.. The results indicated: 1) Tolerant accessions suppress Na<sup>+</sup> accumulation compared to azuki bean. 2) <i>V. nakashimae</i> and <i>V. marina</i> does so by accumulating higher amount of K<sup>+</sup>, whereas <i>V. riukiuensis</i> and <i>V. luteola</i> does so by other mechanisms. 3) <i>V. luteola</i> avoids salt-shedding by allocating excess Na<sup>+</sup> to newly expanded leaves. As the mechanisms of the tolerant species were different, they could be piled up in a single crop <i>via</i> classical breeding or by genetic engineering or genome editing.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868329/pdf/","citationCount":"3","resultStr":"{\"title\":\"Diversity of Na<sup>+</sup> allocation in salt-tolerant species of the genus <i>Vigna</i>.\",\"authors\":\"Yusaku Noda, Ryohei Sugita, Atsushi Hirose, Naoki Kawachi, Keitaro Tanoi, Jun Furukawa, Ken Naito\",\"doi\":\"10.1270/jsbbs.22012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wild species in the genus <i>Vigna</i> are a great resource of tolerance to various stresses including salinity. We have previously screened the genetic resources of the genus <i>Vigna</i> and identified several accessions that have independently evolved salt tolerance. However, many aspects of such tolerance have remained unknown. Thus, we used autoradiography with radioactive sodium (<sup>22</sup>Na<sup>+</sup>) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to visualize and compare Na<sup>+</sup> allocation in <i>Vigna angularis</i> (Willd.) Ohwi & H.Ohashi (azuki bean), <i>Vigna nakashimae</i> (Ohwi) Ohwi & H.Ohashi, <i>Vigna riukiuensis</i> (Ohwi) Ohwi & H.Ohashi, <i>Vigna luteola</i> (Jacq.) Benth. and <i>Vigna marina</i> (Burm.) Merr.. The results indicated: 1) Tolerant accessions suppress Na<sup>+</sup> accumulation compared to azuki bean. 2) <i>V. nakashimae</i> and <i>V. marina</i> does so by accumulating higher amount of K<sup>+</sup>, whereas <i>V. riukiuensis</i> and <i>V. luteola</i> does so by other mechanisms. 3) <i>V. luteola</i> avoids salt-shedding by allocating excess Na<sup>+</sup> to newly expanded leaves. As the mechanisms of the tolerant species were different, they could be piled up in a single crop <i>via</i> classical breeding or by genetic engineering or genome editing.</p>\",\"PeriodicalId\":9258,\"journal\":{\"name\":\"Breeding Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868329/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breeding Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1270/jsbbs.22012\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.22012","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Diversity of Na+ allocation in salt-tolerant species of the genus Vigna.
Wild species in the genus Vigna are a great resource of tolerance to various stresses including salinity. We have previously screened the genetic resources of the genus Vigna and identified several accessions that have independently evolved salt tolerance. However, many aspects of such tolerance have remained unknown. Thus, we used autoradiography with radioactive sodium (22Na+) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to visualize and compare Na+ allocation in Vigna angularis (Willd.) Ohwi & H.Ohashi (azuki bean), Vigna nakashimae (Ohwi) Ohwi & H.Ohashi, Vigna riukiuensis (Ohwi) Ohwi & H.Ohashi, Vigna luteola (Jacq.) Benth. and Vigna marina (Burm.) Merr.. The results indicated: 1) Tolerant accessions suppress Na+ accumulation compared to azuki bean. 2) V. nakashimae and V. marina does so by accumulating higher amount of K+, whereas V. riukiuensis and V. luteola does so by other mechanisms. 3) V. luteola avoids salt-shedding by allocating excess Na+ to newly expanded leaves. As the mechanisms of the tolerant species were different, they could be piled up in a single crop via classical breeding or by genetic engineering or genome editing.
期刊介绍:
Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews
related to breeding. Research Papers are standard original articles.
Notes report new cultivars, breeding lines, germplasms, genetic
stocks, mapping populations, database, software, and techniques
significant and useful for breeding. Reviews summarize recent and
historical events related breeding.
Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors
prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.