调节电刺激不能增强交感轴突的再生。

Tina Tian, Kevin Patel, David Kim, HaoMin SiMa, Alandrea R Harris, Jordan N Owyoung, Patricia J Ward
{"title":"调节电刺激不能增强交感轴突的再生。","authors":"Tina Tian, Kevin Patel, David Kim, HaoMin SiMa, Alandrea R Harris, Jordan N Owyoung, Patricia J Ward","doi":"10.1101/2023.02.03.527071","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injuries are common, and there is a critical need for the development of novel treatments to complement surgical repair. Conditioning electrical stimulation (CES) is a novel variation of the well-studied perioperative electrical stimulation treatment paradigm. CES is a clinically attractive alternative because of its ability to be performed at the bedside prior to a scheduled nerve repair surgery. Although 60 minutes of CES has been shown to enhance motor and sensory axon regeneration, the effects of CES on sympathetic regeneration are unknown. We investigated how two clinically relevant CES paradigms (10 minutes and 60 minutes) impact sympathetic axon regeneration and distal target reinnervation. Our results indicate that the growth of sympathetic axons is inhibited by CES at acute time points, and at a longer survival time point post-injury, there is no difference between sham CES and the CES groups. We conclude sympathetic axons may retain some regenerative ability, but no enhancement is exhibited after CES, which may be accounted for by the inability of the electrical stimulation paradigm to recruit the small-caliber sympathetic axons into activity. Furthermore, 10-minute CES did not enhance motor and sensory regeneration with a direct repair, and neither 60-minute nor 10-minute CES enhanced motor and sensory regeneration through a graft. Further studies will be needed to optimize electrical stimulation parameters to enhance the regeneration of all neuron types.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915730/pdf/","citationCount":"0","resultStr":"{\"title\":\"Conditioning electrical stimulation fails to enhance sympathetic axon regeneration.\",\"authors\":\"Tina Tian, Kevin Patel, David Kim, HaoMin SiMa, Alandrea R Harris, Jordan N Owyoung, Patricia J Ward\",\"doi\":\"10.1101/2023.02.03.527071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peripheral nerve injuries are common, and there is a critical need for the development of novel treatments to complement surgical repair. Conditioning electrical stimulation (CES) is a novel variation of the well-studied perioperative electrical stimulation treatment paradigm. CES is a clinically attractive alternative because of its ability to be performed at the bedside prior to a scheduled nerve repair surgery. Although 60 minutes of CES has been shown to enhance motor and sensory axon regeneration, the effects of CES on sympathetic regeneration are unknown. We investigated how two clinically relevant CES paradigms (10 minutes and 60 minutes) impact sympathetic axon regeneration and distal target reinnervation. Our results indicate that the growth of sympathetic axons is inhibited by CES at acute time points, and at a longer survival time point post-injury, there is no difference between sham CES and the CES groups. We conclude sympathetic axons may retain some regenerative ability, but no enhancement is exhibited after CES, which may be accounted for by the inability of the electrical stimulation paradigm to recruit the small-caliber sympathetic axons into activity. Furthermore, 10-minute CES did not enhance motor and sensory regeneration with a direct repair, and neither 60-minute nor 10-minute CES enhanced motor and sensory regeneration through a graft. Further studies will be needed to optimize electrical stimulation parameters to enhance the regeneration of all neuron types.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915730/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.02.03.527071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.02.03.527071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

周围神经损伤是常见的,迫切需要开发新的治疗方法来补充手术修复。条件反射电刺激(CES)是围手术期电刺激的一种新变体,这两种电刺激都成功地促进了受损周围神经运动和感觉轴突的再生。CES在临床上是一种有吸引力的选择,不仅因为它可以在预定的神经修复手术前在床边进行,而且在增强运动和感觉再生方面,它也被证明优于围手术期电刺激。然而,CES对交感神经再生的影响尚不清楚。因此,我们测试了两种临床相关的CES模式对交感神经轴突再生和远端目标神经再生的影响。由于长期以来有证据表明电刺激会增强运动和感觉轴突,因此我们假设CES也会增强交感轴突的再生。我们的研究结果表明,CES严重抑制了交感神经轴突的生长;然而,在损伤后较长的生存时间点,假CES组和CES组之间没有差异。有证据表明,交感轴突的生长受到条件反射损伤的抑制,并且交感轴突对电刺激的反应可能是发芽而不是伸长。我们的数据表明,在电刺激后,交感轴突可能保留了一些再生能力,但没有表现出增强,这可能是由于目前临床相关的电刺激模式无法使小直径交感轴突参与活动。进一步的研究将需要优化电刺激参数,以提高所有神经元类型的再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conditioning electrical stimulation fails to enhance sympathetic axon regeneration.

Peripheral nerve injuries are common, and there is a critical need for the development of novel treatments to complement surgical repair. Conditioning electrical stimulation (CES) is a novel variation of the well-studied perioperative electrical stimulation treatment paradigm. CES is a clinically attractive alternative because of its ability to be performed at the bedside prior to a scheduled nerve repair surgery. Although 60 minutes of CES has been shown to enhance motor and sensory axon regeneration, the effects of CES on sympathetic regeneration are unknown. We investigated how two clinically relevant CES paradigms (10 minutes and 60 minutes) impact sympathetic axon regeneration and distal target reinnervation. Our results indicate that the growth of sympathetic axons is inhibited by CES at acute time points, and at a longer survival time point post-injury, there is no difference between sham CES and the CES groups. We conclude sympathetic axons may retain some regenerative ability, but no enhancement is exhibited after CES, which may be accounted for by the inability of the electrical stimulation paradigm to recruit the small-caliber sympathetic axons into activity. Furthermore, 10-minute CES did not enhance motor and sensory regeneration with a direct repair, and neither 60-minute nor 10-minute CES enhanced motor and sensory regeneration through a graft. Further studies will be needed to optimize electrical stimulation parameters to enhance the regeneration of all neuron types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-supervised segmentation and characterization of fiber bundles in anatomic tracing data. Single neuron contributions to the auditory brainstem EEG. Neural substrates of cold nociception in Drosophila larva. Inversions Can Accumulate Balanced Sexual Antagonism: Evidence from Simulations and Drosophila Experiments. Programming megakaryocytes to produce engineered platelets for delivering non-native proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1