虚拟现实(VR)与3D打印先天性心脏病模型在住院医师和执业护士教育经验中的比较效果

IF 3.2 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 3D printing in medicine Pub Date : 2023-02-11 DOI:10.1186/s41205-022-00164-6
Jonathan Awori, Seth D Friedman, Christopher Howard, Richard Kronmal, Sujatha Buddhe
{"title":"虚拟现实(VR)与3D打印先天性心脏病模型在住院医师和执业护士教育经验中的比较效果","authors":"Jonathan Awori,&nbsp;Seth D Friedman,&nbsp;Christopher Howard,&nbsp;Richard Kronmal,&nbsp;Sujatha Buddhe","doi":"10.1186/s41205-022-00164-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Medical trainees frequently note that cardiac anatomy is difficult to conceive within a two dimensional framework. The specific anatomic defects and the subsequent pathophysiology in flow dynamics may become more apparent when framed in three dimensional models. Given the evidence of improved comprehension using such modeling, this study aimed to contribute further to that understanding by comparing Virtual Reality (VR) and 3D printed models (3DP) in medical education.</p><p><strong>Objectives: </strong>We sought to systematically compare the perceived subjective effectiveness of Virtual Reality (VR) and 3D printed models (3DP) in the educational experience of residents and nurse practitioners.</p><p><strong>Methods: </strong>Trainees and practitioners underwent individual 15-minute teaching sessions in which features of a developmentally typical heart as well as a congenitally diseased heart were demonstrated using both Virtual Reality (VR) and 3D printed models (3DP). Participants then briefly explored each modality before filling out a short survey in which they identified which model (3DP or VR) they felt was more effective in enhancing their understanding of cardiac anatomy and associated pathophysiology. The survey included a binary summative assessment and a series of Likert scale questions addressing usefulness of each model type and degree of comfort with each modality.</p><p><strong>Results: </strong>Twenty-seven pediatric residents and 3 nurse practitioners explored models of a developmentally typical heart and tetralogy of Fallot pathology. Most participants had minimal prior exposure to VR (1.1 ± 0.4) or 3D printed models (2.1 ± 1.5). Participants endorsed a greater degree of understanding with VR models (8.5 ± 1) compared with 3D Printed models (6.3 ± 1.8) or traditional models of instruction (5.5 ± 1.5) p < 0.001. Most participants felt comfortable with modern technology (7.6 ± 2.1). 87% of participants preferred VR over 3DP.</p><p><strong>Conclusions: </strong>Our study shows that, overall, VR was preferred over 3DP models by pediatric residents and nurse practitioners for understanding cardiac anatomy and pathophysiology.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918815/pdf/","citationCount":"2","resultStr":"{\"title\":\"Comparative effectiveness of virtual reality (VR) vs 3D printed models of congenital heart disease in resident and nurse practitioner educational experience.\",\"authors\":\"Jonathan Awori,&nbsp;Seth D Friedman,&nbsp;Christopher Howard,&nbsp;Richard Kronmal,&nbsp;Sujatha Buddhe\",\"doi\":\"10.1186/s41205-022-00164-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Medical trainees frequently note that cardiac anatomy is difficult to conceive within a two dimensional framework. The specific anatomic defects and the subsequent pathophysiology in flow dynamics may become more apparent when framed in three dimensional models. Given the evidence of improved comprehension using such modeling, this study aimed to contribute further to that understanding by comparing Virtual Reality (VR) and 3D printed models (3DP) in medical education.</p><p><strong>Objectives: </strong>We sought to systematically compare the perceived subjective effectiveness of Virtual Reality (VR) and 3D printed models (3DP) in the educational experience of residents and nurse practitioners.</p><p><strong>Methods: </strong>Trainees and practitioners underwent individual 15-minute teaching sessions in which features of a developmentally typical heart as well as a congenitally diseased heart were demonstrated using both Virtual Reality (VR) and 3D printed models (3DP). Participants then briefly explored each modality before filling out a short survey in which they identified which model (3DP or VR) they felt was more effective in enhancing their understanding of cardiac anatomy and associated pathophysiology. The survey included a binary summative assessment and a series of Likert scale questions addressing usefulness of each model type and degree of comfort with each modality.</p><p><strong>Results: </strong>Twenty-seven pediatric residents and 3 nurse practitioners explored models of a developmentally typical heart and tetralogy of Fallot pathology. Most participants had minimal prior exposure to VR (1.1 ± 0.4) or 3D printed models (2.1 ± 1.5). Participants endorsed a greater degree of understanding with VR models (8.5 ± 1) compared with 3D Printed models (6.3 ± 1.8) or traditional models of instruction (5.5 ± 1.5) p < 0.001. Most participants felt comfortable with modern technology (7.6 ± 2.1). 87% of participants preferred VR over 3DP.</p><p><strong>Conclusions: </strong>Our study shows that, overall, VR was preferred over 3DP models by pediatric residents and nurse practitioners for understanding cardiac anatomy and pathophysiology.</p>\",\"PeriodicalId\":72036,\"journal\":{\"name\":\"3D printing in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918815/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41205-022-00164-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-022-00164-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 2

摘要

背景:医学培训生经常注意到心脏解剖很难在二维框架内构思。在三维模型中,特定的解剖缺陷和随后的血流动力学病理生理可能会变得更加明显。鉴于使用这种模型可以提高理解的证据,本研究旨在通过比较虚拟现实(VR)和3D打印模型(3DP)在医学教育中的应用,进一步促进这种理解。目的:我们试图系统地比较虚拟现实(VR)和3D打印模型(3DP)在住院医师和护士教育经验中的感知主观有效性。方法:受训者和从业人员分别接受15分钟的教学课程,其中使用虚拟现实(VR)和3D打印模型(3DP)展示发育典型心脏和先天性疾病心脏的特征。然后,参与者在填写一份简短的调查问卷之前,简要地探索了每种模式,在调查问卷中,他们确定了他们认为哪种模式(3DP或VR)在增强他们对心脏解剖和相关病理生理学的理解方面更有效。该调查包括一个二元总结性评估和一系列李克特量表问题,解决每种模型类型的有用性和每种模式的舒适程度。结果:27名儿科住院医师和3名执业护士探讨了发育典型心脏模型和法洛四联症病理。大多数参与者之前接触VR(1.1±0.4)或3D打印模型(2.1±1.5)。与3D打印模型(6.3±1.8)或传统教学模型(5.5±1.5)相比,参与者对VR模型(8.5±1)的理解程度更高。结论:我们的研究表明,总体而言,儿科住院医师和执业护士更倾向于使用VR模型来了解心脏解剖和病理生理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative effectiveness of virtual reality (VR) vs 3D printed models of congenital heart disease in resident and nurse practitioner educational experience.

Background: Medical trainees frequently note that cardiac anatomy is difficult to conceive within a two dimensional framework. The specific anatomic defects and the subsequent pathophysiology in flow dynamics may become more apparent when framed in three dimensional models. Given the evidence of improved comprehension using such modeling, this study aimed to contribute further to that understanding by comparing Virtual Reality (VR) and 3D printed models (3DP) in medical education.

Objectives: We sought to systematically compare the perceived subjective effectiveness of Virtual Reality (VR) and 3D printed models (3DP) in the educational experience of residents and nurse practitioners.

Methods: Trainees and practitioners underwent individual 15-minute teaching sessions in which features of a developmentally typical heart as well as a congenitally diseased heart were demonstrated using both Virtual Reality (VR) and 3D printed models (3DP). Participants then briefly explored each modality before filling out a short survey in which they identified which model (3DP or VR) they felt was more effective in enhancing their understanding of cardiac anatomy and associated pathophysiology. The survey included a binary summative assessment and a series of Likert scale questions addressing usefulness of each model type and degree of comfort with each modality.

Results: Twenty-seven pediatric residents and 3 nurse practitioners explored models of a developmentally typical heart and tetralogy of Fallot pathology. Most participants had minimal prior exposure to VR (1.1 ± 0.4) or 3D printed models (2.1 ± 1.5). Participants endorsed a greater degree of understanding with VR models (8.5 ± 1) compared with 3D Printed models (6.3 ± 1.8) or traditional models of instruction (5.5 ± 1.5) p < 0.001. Most participants felt comfortable with modern technology (7.6 ± 2.1). 87% of participants preferred VR over 3DP.

Conclusions: Our study shows that, overall, VR was preferred over 3DP models by pediatric residents and nurse practitioners for understanding cardiac anatomy and pathophysiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
An anthropomorphic phantom for atrial transseptal puncture simulation training. Effects of 3D ultrasonography and 3D printed images on maternal-fetal attachment and its correlation with overall smoking within pregnancy: a pilot study. Accuracy of pelvic bone segmentation for 3d printing: a study of segmentation accuracy based on anatomic landmarks to evaluate the influence of the observer. Planning for complex inferior vena cava filter retrievals: the implementation and effectiveness of 3D printed models. Comparative analysis of conventionally and additively manufactured acetabular shells from a single manufacturer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1