Jonathan Awori, Seth D Friedman, Christopher Howard, Richard Kronmal, Sujatha Buddhe
{"title":"虚拟现实(VR)与3D打印先天性心脏病模型在住院医师和执业护士教育经验中的比较效果","authors":"Jonathan Awori, Seth D Friedman, Christopher Howard, Richard Kronmal, Sujatha Buddhe","doi":"10.1186/s41205-022-00164-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Medical trainees frequently note that cardiac anatomy is difficult to conceive within a two dimensional framework. The specific anatomic defects and the subsequent pathophysiology in flow dynamics may become more apparent when framed in three dimensional models. Given the evidence of improved comprehension using such modeling, this study aimed to contribute further to that understanding by comparing Virtual Reality (VR) and 3D printed models (3DP) in medical education.</p><p><strong>Objectives: </strong>We sought to systematically compare the perceived subjective effectiveness of Virtual Reality (VR) and 3D printed models (3DP) in the educational experience of residents and nurse practitioners.</p><p><strong>Methods: </strong>Trainees and practitioners underwent individual 15-minute teaching sessions in which features of a developmentally typical heart as well as a congenitally diseased heart were demonstrated using both Virtual Reality (VR) and 3D printed models (3DP). Participants then briefly explored each modality before filling out a short survey in which they identified which model (3DP or VR) they felt was more effective in enhancing their understanding of cardiac anatomy and associated pathophysiology. The survey included a binary summative assessment and a series of Likert scale questions addressing usefulness of each model type and degree of comfort with each modality.</p><p><strong>Results: </strong>Twenty-seven pediatric residents and 3 nurse practitioners explored models of a developmentally typical heart and tetralogy of Fallot pathology. Most participants had minimal prior exposure to VR (1.1 ± 0.4) or 3D printed models (2.1 ± 1.5). Participants endorsed a greater degree of understanding with VR models (8.5 ± 1) compared with 3D Printed models (6.3 ± 1.8) or traditional models of instruction (5.5 ± 1.5) p < 0.001. Most participants felt comfortable with modern technology (7.6 ± 2.1). 87% of participants preferred VR over 3DP.</p><p><strong>Conclusions: </strong>Our study shows that, overall, VR was preferred over 3DP models by pediatric residents and nurse practitioners for understanding cardiac anatomy and pathophysiology.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918815/pdf/","citationCount":"2","resultStr":"{\"title\":\"Comparative effectiveness of virtual reality (VR) vs 3D printed models of congenital heart disease in resident and nurse practitioner educational experience.\",\"authors\":\"Jonathan Awori, Seth D Friedman, Christopher Howard, Richard Kronmal, Sujatha Buddhe\",\"doi\":\"10.1186/s41205-022-00164-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Medical trainees frequently note that cardiac anatomy is difficult to conceive within a two dimensional framework. The specific anatomic defects and the subsequent pathophysiology in flow dynamics may become more apparent when framed in three dimensional models. Given the evidence of improved comprehension using such modeling, this study aimed to contribute further to that understanding by comparing Virtual Reality (VR) and 3D printed models (3DP) in medical education.</p><p><strong>Objectives: </strong>We sought to systematically compare the perceived subjective effectiveness of Virtual Reality (VR) and 3D printed models (3DP) in the educational experience of residents and nurse practitioners.</p><p><strong>Methods: </strong>Trainees and practitioners underwent individual 15-minute teaching sessions in which features of a developmentally typical heart as well as a congenitally diseased heart were demonstrated using both Virtual Reality (VR) and 3D printed models (3DP). Participants then briefly explored each modality before filling out a short survey in which they identified which model (3DP or VR) they felt was more effective in enhancing their understanding of cardiac anatomy and associated pathophysiology. The survey included a binary summative assessment and a series of Likert scale questions addressing usefulness of each model type and degree of comfort with each modality.</p><p><strong>Results: </strong>Twenty-seven pediatric residents and 3 nurse practitioners explored models of a developmentally typical heart and tetralogy of Fallot pathology. Most participants had minimal prior exposure to VR (1.1 ± 0.4) or 3D printed models (2.1 ± 1.5). Participants endorsed a greater degree of understanding with VR models (8.5 ± 1) compared with 3D Printed models (6.3 ± 1.8) or traditional models of instruction (5.5 ± 1.5) p < 0.001. Most participants felt comfortable with modern technology (7.6 ± 2.1). 87% of participants preferred VR over 3DP.</p><p><strong>Conclusions: </strong>Our study shows that, overall, VR was preferred over 3DP models by pediatric residents and nurse practitioners for understanding cardiac anatomy and pathophysiology.</p>\",\"PeriodicalId\":72036,\"journal\":{\"name\":\"3D printing in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918815/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41205-022-00164-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-022-00164-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Comparative effectiveness of virtual reality (VR) vs 3D printed models of congenital heart disease in resident and nurse practitioner educational experience.
Background: Medical trainees frequently note that cardiac anatomy is difficult to conceive within a two dimensional framework. The specific anatomic defects and the subsequent pathophysiology in flow dynamics may become more apparent when framed in three dimensional models. Given the evidence of improved comprehension using such modeling, this study aimed to contribute further to that understanding by comparing Virtual Reality (VR) and 3D printed models (3DP) in medical education.
Objectives: We sought to systematically compare the perceived subjective effectiveness of Virtual Reality (VR) and 3D printed models (3DP) in the educational experience of residents and nurse practitioners.
Methods: Trainees and practitioners underwent individual 15-minute teaching sessions in which features of a developmentally typical heart as well as a congenitally diseased heart were demonstrated using both Virtual Reality (VR) and 3D printed models (3DP). Participants then briefly explored each modality before filling out a short survey in which they identified which model (3DP or VR) they felt was more effective in enhancing their understanding of cardiac anatomy and associated pathophysiology. The survey included a binary summative assessment and a series of Likert scale questions addressing usefulness of each model type and degree of comfort with each modality.
Results: Twenty-seven pediatric residents and 3 nurse practitioners explored models of a developmentally typical heart and tetralogy of Fallot pathology. Most participants had minimal prior exposure to VR (1.1 ± 0.4) or 3D printed models (2.1 ± 1.5). Participants endorsed a greater degree of understanding with VR models (8.5 ± 1) compared with 3D Printed models (6.3 ± 1.8) or traditional models of instruction (5.5 ± 1.5) p < 0.001. Most participants felt comfortable with modern technology (7.6 ± 2.1). 87% of participants preferred VR over 3DP.
Conclusions: Our study shows that, overall, VR was preferred over 3DP models by pediatric residents and nurse practitioners for understanding cardiac anatomy and pathophysiology.