{"title":"结合ToF-SIMS和多变量分析对人体表皮进行探测。","authors":"Xavier Delvaux, Céline Noël, Yves Poumay, Laurent Houssiau","doi":"10.1116/6.0002289","DOIUrl":null,"url":null,"abstract":"<p><p>The mammalian organism is continuously exposed to various biological and chemical threats from its surroundings. In order to provide protection against these threats, mammals have developed a specialized defense system at the interface with their environment. This system, known as the epidermis, is mainly composed of stratified keratinocytes organized in a complex self-renewing structure providing a mechanical and chemical barrier at the skin surface. However, numerous skin-related pathologies can interfere with the proper formation and function of the epidermal barrier. The pathogenesis of these alterations is often very complex. Understanding the changes induced in epidermal tissues by these pathologies at a molecular level is key for their treatment and prevention. In this context, this work aims at developing a thorough and reproducible characterization methodology of the human epidermis by applying ToF-SIMS to the study of an in vitro epidermal model known as reconstructed human epidermis (RHE). Indeed, although the potential of ToF-SIMS for the characterization of the mammalian skin has already been demonstrated, very few studies focus their efforts on the human epidermis itself. Here, we performed static ToF-SIMS characterizations of RHE cryosections, combining both high mass and high lateral resolution acquisitions. In addition, principal components analysis was used as a multivariate analysis tool. This contributed to the decorrelation of the complex datasets obtained from these biological systems and allowed capturing of their most statistically representative spectral features. Remarkably, this tool proved to be successful in extracting meaningful biological information from the datasets by yielding principal components distinguishing the cornified layers from the metabolically active epidermal cells. Finally, on the basis of multiple ToF-SIMS acquisitions, we showed that this methodology allows for the convenient production of experimental replicates, a key feature often difficult to achieve in ex vivo approaches.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the human epidermis by combining ToF-SIMS and multivariate analysis.\",\"authors\":\"Xavier Delvaux, Céline Noël, Yves Poumay, Laurent Houssiau\",\"doi\":\"10.1116/6.0002289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mammalian organism is continuously exposed to various biological and chemical threats from its surroundings. In order to provide protection against these threats, mammals have developed a specialized defense system at the interface with their environment. This system, known as the epidermis, is mainly composed of stratified keratinocytes organized in a complex self-renewing structure providing a mechanical and chemical barrier at the skin surface. However, numerous skin-related pathologies can interfere with the proper formation and function of the epidermal barrier. The pathogenesis of these alterations is often very complex. Understanding the changes induced in epidermal tissues by these pathologies at a molecular level is key for their treatment and prevention. In this context, this work aims at developing a thorough and reproducible characterization methodology of the human epidermis by applying ToF-SIMS to the study of an in vitro epidermal model known as reconstructed human epidermis (RHE). Indeed, although the potential of ToF-SIMS for the characterization of the mammalian skin has already been demonstrated, very few studies focus their efforts on the human epidermis itself. Here, we performed static ToF-SIMS characterizations of RHE cryosections, combining both high mass and high lateral resolution acquisitions. In addition, principal components analysis was used as a multivariate analysis tool. This contributed to the decorrelation of the complex datasets obtained from these biological systems and allowed capturing of their most statistically representative spectral features. Remarkably, this tool proved to be successful in extracting meaningful biological information from the datasets by yielding principal components distinguishing the cornified layers from the metabolically active epidermal cells. Finally, on the basis of multiple ToF-SIMS acquisitions, we showed that this methodology allows for the convenient production of experimental replicates, a key feature often difficult to achieve in ex vivo approaches.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0002289\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002289","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Probing the human epidermis by combining ToF-SIMS and multivariate analysis.
The mammalian organism is continuously exposed to various biological and chemical threats from its surroundings. In order to provide protection against these threats, mammals have developed a specialized defense system at the interface with their environment. This system, known as the epidermis, is mainly composed of stratified keratinocytes organized in a complex self-renewing structure providing a mechanical and chemical barrier at the skin surface. However, numerous skin-related pathologies can interfere with the proper formation and function of the epidermal barrier. The pathogenesis of these alterations is often very complex. Understanding the changes induced in epidermal tissues by these pathologies at a molecular level is key for their treatment and prevention. In this context, this work aims at developing a thorough and reproducible characterization methodology of the human epidermis by applying ToF-SIMS to the study of an in vitro epidermal model known as reconstructed human epidermis (RHE). Indeed, although the potential of ToF-SIMS for the characterization of the mammalian skin has already been demonstrated, very few studies focus their efforts on the human epidermis itself. Here, we performed static ToF-SIMS characterizations of RHE cryosections, combining both high mass and high lateral resolution acquisitions. In addition, principal components analysis was used as a multivariate analysis tool. This contributed to the decorrelation of the complex datasets obtained from these biological systems and allowed capturing of their most statistically representative spectral features. Remarkably, this tool proved to be successful in extracting meaningful biological information from the datasets by yielding principal components distinguishing the cornified layers from the metabolically active epidermal cells. Finally, on the basis of multiple ToF-SIMS acquisitions, we showed that this methodology allows for the convenient production of experimental replicates, a key feature often difficult to achieve in ex vivo approaches.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.