凝集素DrfL能抑制胶质瘤细胞的迁移和粘附,并引发依赖自噬的细胞死亡。

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Glycoconjugate Journal Pub Date : 2023-02-01 Epub Date: 2022-12-16 DOI:10.1007/s10719-022-10095-3
Ingrid A V Wolin, Ana Paula M Nascimento, Rodrigo Seeger, Gabriela G Poluceno, Alfeu Zanotto-Filho, Claudia B Nedel, Carla I Tasca, Sarah Elizabeth Gomes Correia, Messias Vital Oliveira, Vanir Reis Pinto-Junior, Vinicius Jose Silva Osterne, Kyria Santiago Nascimento, Benildo Sousa Cavada, Rodrigo Bainy Leal
{"title":"凝集素DrfL能抑制胶质瘤细胞的迁移和粘附,并引发依赖自噬的细胞死亡。","authors":"Ingrid A V Wolin, Ana Paula M Nascimento, Rodrigo Seeger, Gabriela G Poluceno, Alfeu Zanotto-Filho, Claudia B Nedel, Carla I Tasca, Sarah Elizabeth Gomes Correia, Messias Vital Oliveira, Vanir Reis Pinto-Junior, Vinicius Jose Silva Osterne, Kyria Santiago Nascimento, Benildo Sousa Cavada, Rodrigo Bainy Leal","doi":"10.1007/s10719-022-10095-3","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38<sup>MAPK</sup> and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 1","pages":"47-67"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The lectin DrfL inhibits cell migration, adhesion and triggers autophagy-dependent cell death in glioma cells.\",\"authors\":\"Ingrid A V Wolin, Ana Paula M Nascimento, Rodrigo Seeger, Gabriela G Poluceno, Alfeu Zanotto-Filho, Claudia B Nedel, Carla I Tasca, Sarah Elizabeth Gomes Correia, Messias Vital Oliveira, Vanir Reis Pinto-Junior, Vinicius Jose Silva Osterne, Kyria Santiago Nascimento, Benildo Sousa Cavada, Rodrigo Bainy Leal\",\"doi\":\"10.1007/s10719-022-10095-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38<sup>MAPK</sup> and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.</p>\",\"PeriodicalId\":12762,\"journal\":{\"name\":\"Glycoconjugate Journal\",\"volume\":\"40 1\",\"pages\":\"47-67\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycoconjugate Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10719-022-10095-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-022-10095-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多形性胶质母细胞瘤(GBM)是胶质瘤中最具侵袭性的类型,其糖基化模式不典型,可能会调节参与肿瘤发生的信号通路。凝集素是具有抗肿瘤特性的糖结合蛋白。本研究旨在评估 Dioclea reflexa 凝集素(DrfL)对胶质瘤细胞培养物的抗肿瘤能力。结果表明,DrfL 能诱导 C6、U-87MG 和 GBM1 细胞系胶质瘤细胞培养物发生形态学变化并产生细胞毒性作用。DrfL的作用依赖于与聚糖的相互作用,并且需要一个碳水化合物识别结构域(CRD),其细胞毒性作用显然对肿瘤细胞具有选择性,不会改变原代星形胶质细胞的活力和形态。DrfL 可抑制肿瘤细胞的迁移、粘附、增殖和存活,这些作用伴随着 p38MAPK 和 JNK(p46/54)的激活,以及 Akt 和 ERK1/2 的抑制。DrfL 还能上调 GBM 细胞中的促凋亡蛋白(BNIP3 和 PUMA)和自噬蛋白(Atg5 和 LC3 分裂)。值得注意的是,抑制自噬和 Caspase-8 都能减轻经 DrfL 处理的 GBM 细胞的细胞死亡。我们的研究结果表明,DrfL 对 GBM 的细胞毒性涉及细胞通路的调节,包括与自噬和 caspase-8 依赖性细胞死亡相关的 MAPKs 和 Akt。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The lectin DrfL inhibits cell migration, adhesion and triggers autophagy-dependent cell death in glioma cells.

Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38MAPK and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glycoconjugate Journal
Glycoconjugate Journal 生物-生化与分子生物学
CiteScore
6.00
自引率
3.30%
发文量
63
审稿时长
1 months
期刊介绍: Glycoconjugate Journal publishes articles and reviews on all areas concerned with: function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics. Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.
期刊最新文献
Processing of N-glycans in the ER and Golgi influences the production of surface sialylated glycoRNA. Correction: Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain. Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain. Synthesis of oligosaccharides from terminal B. pertussis LPS pentasaccharide and definition of the minimal epitope recognized by anti-pertussis antibodies. Cloning, expression and characterisation of a novel mollusc α-1,2-Fucosyltransferase from Crassostrea gigas (CgFUT2).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1