{"title":"螺旋钻治疗中激光-康普顿散射的x射线增强研究。","authors":"Yuya Koshiba, Ryosuke Morita, Koki Yamashita, Masakazu Washio, Kazuyuki Sakaue, Takeshi Higashiguchi, Junji Urakawa","doi":"10.1080/09553002.2020.1811420","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Monochromatic hard X-rays with high brightness are desired for medical applications including Auger therapy. One can generate such X-rays through laser-Compton scattering (LCS) by allowing photons from a compact laser system to interact with electrons accelerated by a compact electron accelerator. In this paper, after a brief description of laser-Compton X-ray sources, a scheme called crab crossing to enhance the X-ray intensity is proposed. The effect of crab crossing is evaluated, and we report our dedicated laser system for the crab crossing LCS research.</p><p><strong>Materials and methods: </strong>The luminosity enhancement factor by crab crossing is evaluated. For the electron beam, a rf deflector will be used to generate a tilted electron beam. For the laser system, chirped pulsed amplification is adopted. Yb-doped optical fibers and a Yb:YAG thin-disk is used for the laser gain media.</p><p><strong>Results: </strong>The luminosity enhancement factor by crab crossing is expected to be 3.8 when the crossing angle is 45 degrees. 10mJ pulse energy was achieved by thin-disk regenerative amplifier. The pulse duration after the pulse compressor was about 1.5 ps.</p><p><strong>Conclusion: </strong>We are going to demonstrate the LCS X-ray enhancement by crab crossing of electron beam and laser pulse. The expected enhancement factor is 3.8. We have successfully finished the laser development and the proof-of-principle experiment will be conducted soon.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 1","pages":"77-81"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09553002.2020.1811420","citationCount":"0","resultStr":"{\"title\":\"Study on X-ray enhancement in Laser-Compton scattering for auger therapy.\",\"authors\":\"Yuya Koshiba, Ryosuke Morita, Koki Yamashita, Masakazu Washio, Kazuyuki Sakaue, Takeshi Higashiguchi, Junji Urakawa\",\"doi\":\"10.1080/09553002.2020.1811420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Monochromatic hard X-rays with high brightness are desired for medical applications including Auger therapy. One can generate such X-rays through laser-Compton scattering (LCS) by allowing photons from a compact laser system to interact with electrons accelerated by a compact electron accelerator. In this paper, after a brief description of laser-Compton X-ray sources, a scheme called crab crossing to enhance the X-ray intensity is proposed. The effect of crab crossing is evaluated, and we report our dedicated laser system for the crab crossing LCS research.</p><p><strong>Materials and methods: </strong>The luminosity enhancement factor by crab crossing is evaluated. For the electron beam, a rf deflector will be used to generate a tilted electron beam. For the laser system, chirped pulsed amplification is adopted. Yb-doped optical fibers and a Yb:YAG thin-disk is used for the laser gain media.</p><p><strong>Results: </strong>The luminosity enhancement factor by crab crossing is expected to be 3.8 when the crossing angle is 45 degrees. 10mJ pulse energy was achieved by thin-disk regenerative amplifier. The pulse duration after the pulse compressor was about 1.5 ps.</p><p><strong>Conclusion: </strong>We are going to demonstrate the LCS X-ray enhancement by crab crossing of electron beam and laser pulse. The expected enhancement factor is 3.8. We have successfully finished the laser development and the proof-of-principle experiment will be conducted soon.</p>\",\"PeriodicalId\":14261,\"journal\":{\"name\":\"International Journal of Radiation Biology\",\"volume\":\"99 1\",\"pages\":\"77-81\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09553002.2020.1811420\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Radiation Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/09553002.2020.1811420\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09553002.2020.1811420","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Study on X-ray enhancement in Laser-Compton scattering for auger therapy.
Purpose: Monochromatic hard X-rays with high brightness are desired for medical applications including Auger therapy. One can generate such X-rays through laser-Compton scattering (LCS) by allowing photons from a compact laser system to interact with electrons accelerated by a compact electron accelerator. In this paper, after a brief description of laser-Compton X-ray sources, a scheme called crab crossing to enhance the X-ray intensity is proposed. The effect of crab crossing is evaluated, and we report our dedicated laser system for the crab crossing LCS research.
Materials and methods: The luminosity enhancement factor by crab crossing is evaluated. For the electron beam, a rf deflector will be used to generate a tilted electron beam. For the laser system, chirped pulsed amplification is adopted. Yb-doped optical fibers and a Yb:YAG thin-disk is used for the laser gain media.
Results: The luminosity enhancement factor by crab crossing is expected to be 3.8 when the crossing angle is 45 degrees. 10mJ pulse energy was achieved by thin-disk regenerative amplifier. The pulse duration after the pulse compressor was about 1.5 ps.
Conclusion: We are going to demonstrate the LCS X-ray enhancement by crab crossing of electron beam and laser pulse. The expected enhancement factor is 3.8. We have successfully finished the laser development and the proof-of-principle experiment will be conducted soon.
期刊介绍:
The International Journal of Radiation Biology publishes original papers, reviews, current topic articles, technical notes/reports, and meeting reports on the effects of ionizing, UV and visible radiation, accelerated particles, electromagnetic fields, ultrasound, heat and related modalities. The focus is on the biological effects of such radiations: from radiation chemistry to the spectrum of responses of living organisms and underlying mechanisms, including genetic abnormalities, repair phenomena, cell death, dose modifying agents and tissue responses. Application of basic studies to medical uses of radiation extends the coverage to practical problems such as physical and chemical adjuvants which improve the effectiveness of radiation in cancer therapy. Assessment of the hazards of low doses of radiation is also considered.