Camilo Mora, Tristan McKenzie, Isabella M. Gaw, Jacqueline M. Dean, Hannah von Hammerstein, Tabatha A. Knudson, Renee O. Setter, Charlotte Z. Smith, Kira M. Webster, Jonathan A. Patz, Erik C. Franklin
{"title":"一半以上的已知人类致病疾病会因气候变化而恶化","authors":"Camilo Mora, Tristan McKenzie, Isabella M. Gaw, Jacqueline M. Dean, Hannah von Hammerstein, Tabatha A. Knudson, Renee O. Setter, Charlotte Z. Smith, Kira M. Webster, Jonathan A. Patz, Erik C. Franklin","doi":"10.1038/s41558-022-01426-1","DOIUrl":null,"url":null,"abstract":"It is relatively well accepted that climate change can affect human pathogenic diseases; however, the full extent of this risk remains poorly quantified. Here we carried out a systematic search for empirical examples about the impacts of ten climatic hazards sensitive to greenhouse gas (GHG) emissions on each known human pathogenic disease. We found that 58% (that is, 218 out of 375) of infectious diseases confronted by humanity worldwide have been at some point aggravated by climatic hazards; 16% were at times diminished. Empirical cases revealed 1,006 unique pathways in which climatic hazards, via different transmission types, led to pathogenic diseases. The human pathogenic diseases and transmission pathways aggravated by climatic hazards are too numerous for comprehensive societal adaptations, highlighting the urgent need to work at the source of the problem: reducing GHG emissions. A systematic review shows that >58% of infectious diseases confronted by humanity, via 1,006 unique pathways, have at some point been affected by climatic hazards sensitive to GHGs. These results highlight the mounting challenge for adaption and the urgent need to reduce GHG emissions.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"12 9","pages":"869-875"},"PeriodicalIF":29.6000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362357/pdf/","citationCount":"151","resultStr":"{\"title\":\"Over half of known human pathogenic diseases can be aggravated by climate change\",\"authors\":\"Camilo Mora, Tristan McKenzie, Isabella M. Gaw, Jacqueline M. Dean, Hannah von Hammerstein, Tabatha A. Knudson, Renee O. Setter, Charlotte Z. Smith, Kira M. Webster, Jonathan A. Patz, Erik C. Franklin\",\"doi\":\"10.1038/s41558-022-01426-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is relatively well accepted that climate change can affect human pathogenic diseases; however, the full extent of this risk remains poorly quantified. Here we carried out a systematic search for empirical examples about the impacts of ten climatic hazards sensitive to greenhouse gas (GHG) emissions on each known human pathogenic disease. We found that 58% (that is, 218 out of 375) of infectious diseases confronted by humanity worldwide have been at some point aggravated by climatic hazards; 16% were at times diminished. Empirical cases revealed 1,006 unique pathways in which climatic hazards, via different transmission types, led to pathogenic diseases. The human pathogenic diseases and transmission pathways aggravated by climatic hazards are too numerous for comprehensive societal adaptations, highlighting the urgent need to work at the source of the problem: reducing GHG emissions. A systematic review shows that >58% of infectious diseases confronted by humanity, via 1,006 unique pathways, have at some point been affected by climatic hazards sensitive to GHGs. These results highlight the mounting challenge for adaption and the urgent need to reduce GHG emissions.\",\"PeriodicalId\":18974,\"journal\":{\"name\":\"Nature Climate Change\",\"volume\":\"12 9\",\"pages\":\"869-875\"},\"PeriodicalIF\":29.6000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362357/pdf/\",\"citationCount\":\"151\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Climate Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41558-022-01426-1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-022-01426-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Over half of known human pathogenic diseases can be aggravated by climate change
It is relatively well accepted that climate change can affect human pathogenic diseases; however, the full extent of this risk remains poorly quantified. Here we carried out a systematic search for empirical examples about the impacts of ten climatic hazards sensitive to greenhouse gas (GHG) emissions on each known human pathogenic disease. We found that 58% (that is, 218 out of 375) of infectious diseases confronted by humanity worldwide have been at some point aggravated by climatic hazards; 16% were at times diminished. Empirical cases revealed 1,006 unique pathways in which climatic hazards, via different transmission types, led to pathogenic diseases. The human pathogenic diseases and transmission pathways aggravated by climatic hazards are too numerous for comprehensive societal adaptations, highlighting the urgent need to work at the source of the problem: reducing GHG emissions. A systematic review shows that >58% of infectious diseases confronted by humanity, via 1,006 unique pathways, have at some point been affected by climatic hazards sensitive to GHGs. These results highlight the mounting challenge for adaption and the urgent need to reduce GHG emissions.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.